{"title":"Autostereoscopic visualization of volume data using computer-generated holograms","authors":"Yuji Sakamoto, Yoshinao Aoki","doi":"10.1002/ecjc.20355","DOIUrl":null,"url":null,"abstract":"<p>There is a need for methods to display 3-dimensional data (volume data) obtained from such procedures as computer tomography (CT), magnetic resonance imaging (MRI), and 3-dimensional radar in a form that can easily be interpreted by humans. Methods that present such data via a 3-dimensional display are able to show the 3-dimensional image directly to humans and are well adapted to allow the recognition of 3-dimensional structure. In particular, 3-dimensional displays using holography are especially suited to assisting humans in interpreting 3-dimensional information. In this paper we propose a volume rendering computer-generated hologram (CGH) method that calculates a hologram directly from volume data using CGH technology without employing any intermediary images or photographic procedures. Since in this method the hologram is generated computationally, there is significant flexibility in how the 3-dimensional image can be displayed. As well as enabling images to be displayed with shading, a whole range of different 3-dimensional display techniques are possible; for example, at one extreme we can display only the surfaces in the volume data making the internal regions opaque, while by introducing transparency we can make the internal structures visible. We have confirmed the effectiveness of the proposed method by using it to create computer-generated holograms on the basis of 3-dimensional medical MRI data and conducting optical experiments. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(11): 31–39, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20355</p>","PeriodicalId":100407,"journal":{"name":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","volume":"90 11","pages":"31-39"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ecjc.20355","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecjc.20355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
There is a need for methods to display 3-dimensional data (volume data) obtained from such procedures as computer tomography (CT), magnetic resonance imaging (MRI), and 3-dimensional radar in a form that can easily be interpreted by humans. Methods that present such data via a 3-dimensional display are able to show the 3-dimensional image directly to humans and are well adapted to allow the recognition of 3-dimensional structure. In particular, 3-dimensional displays using holography are especially suited to assisting humans in interpreting 3-dimensional information. In this paper we propose a volume rendering computer-generated hologram (CGH) method that calculates a hologram directly from volume data using CGH technology without employing any intermediary images or photographic procedures. Since in this method the hologram is generated computationally, there is significant flexibility in how the 3-dimensional image can be displayed. As well as enabling images to be displayed with shading, a whole range of different 3-dimensional display techniques are possible; for example, at one extreme we can display only the surfaces in the volume data making the internal regions opaque, while by introducing transparency we can make the internal structures visible. We have confirmed the effectiveness of the proposed method by using it to create computer-generated holograms on the basis of 3-dimensional medical MRI data and conducting optical experiments. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(11): 31–39, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20355
使用计算机生成的全息图实现体积数据的自动立体可视化
需要将从诸如计算机断层扫描(CT)、磁共振成像(MRI)和三维雷达之类的过程中获得的三维数据(体积数据)以人类能够容易解释的形式显示的方法。经由三维显示器呈现这种数据的方法能够直接向人类显示三维图像,并且很好地适于允许识别三维结构。特别地,使用全息术的三维显示器特别适合于帮助人类解释三维信息。在本文中,我们提出了一种体绘制计算机生成全息图(CGH)方法,该方法使用CGH技术直接从体数据计算全息图,而不使用任何中间图像或摄影程序。由于在这种方法中全息图是通过计算生成的,因此在如何显示三维图像方面具有很大的灵活性。除了能够用阴影显示图像之外,一系列不同的三维显示技术也是可能的;例如,在一个极端,我们可以只显示体积数据中的表面,使内部区域不透明,而通过引入透明度,我们可以使内部结构可见。我们已经通过使用该方法在三维医学MRI数据的基础上创建计算机生成的全息图并进行光学实验来证实所提出的方法的有效性。©2007 Wiley Periodicals,股份有限公司Electron Comm Jpn Pt 3,90(11):31-392007;在线发表于Wiley InterScience(www.InterScience.Wiley.com)。DOI 10.1002/ecjc.20355
本文章由计算机程序翻译,如有差异,请以英文原文为准。