{"title":"Characterization of sonochemical reactors by chemical dosimetry","authors":"Yoshiyuki Asakura, Masahiro Maebayashi, Tatsuro Matsuoka, Shinobu Koda","doi":"10.1002/ecjc.20315","DOIUrl":null,"url":null,"abstract":"<p>Irradiation of ultrasonic waves induces cavitation in a solution, and a chemical action instigated by radicals occurs. This chemical action is reported to be most efficient in the region of several hundred kilohertz frequencies. Application of sonochemistry based on ultrasonic chemical action remains at the laboratory scale and has not yet reached the industrial practical scale. In order to realize practical applications of sonochemistry, there is a need to scale-up the sonochemical reactors. For this purpose, we used a 490-kHz cylindrical sonochemical reactor that is long in the irradiation direction, and used potassium iodide (KI) dosimetry, sonochemical luminescence, and calorimetry to evaluate the sonochemical reaction efficiency and reaction field of the reactor. We performed the evaluation with the ultrasonic irradiation direction in the horizontal and vertical directions. As a result, we observed sonochemical luminescence and a rise in temperature near the reflection surface, for both the horizontal and vertical irradiation. For the horizontal irradiation, the I<sub>3</sub><sup>−</sup> concentration was evenly distributed in the irradiation direction. Moreover, we found that the sonochemical reaction efficiency was the same for both the horizontal irradiation and the vertical irradiation. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(8): 1– 8, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20315</p>","PeriodicalId":100407,"journal":{"name":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","volume":"90 8","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ecjc.20315","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecjc.20315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Irradiation of ultrasonic waves induces cavitation in a solution, and a chemical action instigated by radicals occurs. This chemical action is reported to be most efficient in the region of several hundred kilohertz frequencies. Application of sonochemistry based on ultrasonic chemical action remains at the laboratory scale and has not yet reached the industrial practical scale. In order to realize practical applications of sonochemistry, there is a need to scale-up the sonochemical reactors. For this purpose, we used a 490-kHz cylindrical sonochemical reactor that is long in the irradiation direction, and used potassium iodide (KI) dosimetry, sonochemical luminescence, and calorimetry to evaluate the sonochemical reaction efficiency and reaction field of the reactor. We performed the evaluation with the ultrasonic irradiation direction in the horizontal and vertical directions. As a result, we observed sonochemical luminescence and a rise in temperature near the reflection surface, for both the horizontal and vertical irradiation. For the horizontal irradiation, the I3− concentration was evenly distributed in the irradiation direction. Moreover, we found that the sonochemical reaction efficiency was the same for both the horizontal irradiation and the vertical irradiation. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(8): 1– 8, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20315
声化学反应器的化学剂量测定表征
超声波的照射会在溶液中引发空化,并发生由自由基引发的化学作用。据报道,这种化学作用在几百千赫兹的频率范围内最有效。基于超声化学作用的声化学应用仍停留在实验室规模,尚未达到工业实用规模。为了实现声化学的实际应用,需要扩大声化学反应器的规模。为此,我们使用了一个在辐射方向上较长的490kHz圆柱形声化学反应器,并使用碘化钾(KI)剂量测定、声化学发光和量热法来评估反应器的声化学反应效率和反应场。我们用水平和垂直方向上的超声照射方向进行了评估。结果,对于水平和垂直照射,我们观察到反射表面附近的声化学发光和温度升高。对于水平照射,I3−浓度在照射方向上均匀分布。此外,我们发现水平辐射和垂直辐射的声化学反应效率是相同的。©2007 Wiley Periodicals,股份有限公司Electron Comm Jpn Pt 3,90(8):2007年1月8日;在线发表于Wiley InterScience(www.InterScience.Wiley.com)。DOI 10.1002/ecjc.20315
本文章由计算机程序翻译,如有差异,请以英文原文为准。