The construction of periodically time-variant convolutional codes using binary linear block codes

Naonori Ogasahara, Manabu Kobayashi, Shigeichi Hirasawa
{"title":"The construction of periodically time-variant convolutional codes using binary linear block codes","authors":"Naonori Ogasahara,&nbsp;Manabu Kobayashi,&nbsp;Shigeichi Hirasawa","doi":"10.1002/ecjc.20271","DOIUrl":null,"url":null,"abstract":"<p>In 1996 Rosenthal and York proposed (time-invariant) BCH convolutional codes [4] in which the parity check matrix of a BCH code is used in the construction of the convolutional code. The lower bound on the minimum free distance of a BCH convolutional code is guaranteed by the BCH limit. In this paper we propose a periodically time-variant convolutional code that can be constructed not only using the BCH parity check matrix but using the check matrix of any binary linear block code and show that the lower bound on the minimum free distance is guaranteed by the minimum free distance of the binary linear block code. In addition, taking 12 binary linear block codes as examples, we perform comparisons of the proposed codes with BCH convolutional codes using three evaluation criteria (minimum free distance, number of delay elements, coding rate) and show that there exist proposed codes that are superior to existing ones. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(9): 31– 40, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20271</p>","PeriodicalId":100407,"journal":{"name":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","volume":"90 9","pages":"31-40"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ecjc.20271","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecjc.20271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In 1996 Rosenthal and York proposed (time-invariant) BCH convolutional codes [4] in which the parity check matrix of a BCH code is used in the construction of the convolutional code. The lower bound on the minimum free distance of a BCH convolutional code is guaranteed by the BCH limit. In this paper we propose a periodically time-variant convolutional code that can be constructed not only using the BCH parity check matrix but using the check matrix of any binary linear block code and show that the lower bound on the minimum free distance is guaranteed by the minimum free distance of the binary linear block code. In addition, taking 12 binary linear block codes as examples, we perform comparisons of the proposed codes with BCH convolutional codes using three evaluation criteria (minimum free distance, number of delay elements, coding rate) and show that there exist proposed codes that are superior to existing ones. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(9): 31– 40, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20271

用二进制线性分组码构造周期时变卷积码
1996年,Rosenthal和York提出了(时间不变的)BCH卷积码[4],其中在卷积码的构造中使用BCH码的奇偶校验矩阵。BCH卷积码的最小自由距离的下界由BCH极限保证。在本文中,我们提出了一种周期性时变卷积码,它不仅可以使用BCH奇偶校验矩阵,而且可以使用任何二进制线性块码的校验矩阵来构造,并证明了二进制线性块代码的最小自由距离保证了最小自由距离的下界。此外,以12个二进制线性块码为例,我们使用三个评估标准(最小自由距离、延迟元素数量、编码率)将所提出的码与BCH卷积码进行了比较,并表明存在优于现有码的所提出码。©2007 Wiley Periodicals,股份有限公司Electron Comm Jpn Pt 3,90(9):31-402007;在线发表于Wiley InterScience(www.InterScience.Wiley.com)。DOI 10.1002/ecjc.20271
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信