{"title":"Algorithms for the minimum partitioning problems in graphs","authors":"Hiroshi Nagamochi","doi":"10.1002/ecjc.20341","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the author explains the recent evolution of algorithms for minimum partitioning problems in graphs. When the set of vertices of a graph having non-negative weights for edges is divided into <i>k</i> subsets, the set of edges for which both endpoints are contained in different subsets is called a <i>k</i>-way cut or <i>k</i>-cut. The problem of obtaining the <i>k</i>-way cut that minimizes the sum of the weights is an important research topic that appears in many practical applications such as VLSI design. In this paper, the author introduces recent results including cases in which sets of terminals or sets of terminal pairs that are to be separated are further specified in this problem and cases in which the objects to be partitioned are extended from graphs to hypergraphs or submodular set functions. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(10): 63– 78, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20341</p>","PeriodicalId":100407,"journal":{"name":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","volume":"90 10","pages":"63-78"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ecjc.20341","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecjc.20341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper, the author explains the recent evolution of algorithms for minimum partitioning problems in graphs. When the set of vertices of a graph having non-negative weights for edges is divided into k subsets, the set of edges for which both endpoints are contained in different subsets is called a k-way cut or k-cut. The problem of obtaining the k-way cut that minimizes the sum of the weights is an important research topic that appears in many practical applications such as VLSI design. In this paper, the author introduces recent results including cases in which sets of terminals or sets of terminal pairs that are to be separated are further specified in this problem and cases in which the objects to be partitioned are extended from graphs to hypergraphs or submodular set functions. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(10): 63– 78, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20341
图中最小划分问题的算法
在本文中,作者解释了图中最小划分问题算法的最新发展。当图的边具有非负权重的顶点集被划分为k个子集时,其两个端点都包含在不同子集中的边集被称为k向割或k割。在VLSI设计等许多实际应用中,获得最小化权重之和的k路切割问题是一个重要的研究课题。在本文中,作者介绍了最近的结果,包括在这个问题中进一步指定了要分离的端子集或端子对集的情况,以及将要划分的对象从图扩展到超图或子模集函数的情况。©2007 Wiley Periodicals,股份有限公司Electron Comm Jpn Pt 3,90(10):63–782007;在线发表于Wiley InterScience(www.InterScience.Wiley.com)。DOI 10.1002/ecjc.20341
本文章由计算机程序翻译,如有差异,请以英文原文为准。