Estimation of graphical models using the norm

IF 2.9 4区 经济学 Q1 ECONOMICS
Khai Xiang Chiong, Hyungsik Roger Moon
{"title":"Estimation of graphical models using the norm","authors":"Khai Xiang Chiong,&nbsp;Hyungsik Roger Moon","doi":"10.1111/ectj.12104","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Gaussian graphical models are recently used in economics to obtain networks of dependence among agents. A widely used estimator is the graphical least absolute shrinkage and selection operator (GLASSO), which amounts to a maximum likelihood estimation regularized using the matrix norm on the precision matrix Ω. The norm is a LASSO penalty that controls for sparsity, or the number of zeros in Ω. We propose a new estimator called structured GLASSO (SGLASSO) that uses the mixed norm. The use of the penalty controls for the structure of the sparsity in Ω. We show that when the network size is fixed, SGLASSO is asymptotically equivalent to an infeasible GLASSO problem which prioritizes the sparsity-recovery of high-degree nodes. Monte Carlo simulation shows that SGLASSO outperforms GLASSO in terms of estimating the overall precision matrix and in terms of estimating the structure of the graphical model. In an empirical illustration using a classic firms' investment data set, we obtain a network of firms' dependence that exhibits the core–periphery structure, with General Motors, General Electric and US Steel forming the core group of firms.</p>\n </div>","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":"21 3","pages":"247-263"},"PeriodicalIF":2.9000,"publicationDate":"2017-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ectj.12104","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12104","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 3

Abstract

Gaussian graphical models are recently used in economics to obtain networks of dependence among agents. A widely used estimator is the graphical least absolute shrinkage and selection operator (GLASSO), which amounts to a maximum likelihood estimation regularized using the matrix norm on the precision matrix Ω. The norm is a LASSO penalty that controls for sparsity, or the number of zeros in Ω. We propose a new estimator called structured GLASSO (SGLASSO) that uses the mixed norm. The use of the penalty controls for the structure of the sparsity in Ω. We show that when the network size is fixed, SGLASSO is asymptotically equivalent to an infeasible GLASSO problem which prioritizes the sparsity-recovery of high-degree nodes. Monte Carlo simulation shows that SGLASSO outperforms GLASSO in terms of estimating the overall precision matrix and in terms of estimating the structure of the graphical model. In an empirical illustration using a classic firms' investment data set, we obtain a network of firms' dependence that exhibits the core–periphery structure, with General Motors, General Electric and US Steel forming the core group of firms.

使用范数估计图形模型
高斯图形模型最近在经济学中被用来获得代理之间的依赖网络。一种广泛使用的估计器是图形最小绝对收缩和选择算子(GLSSO),它相当于使用精度矩阵Ω上的矩阵范数正则化的最大似然估计。范数是LASSO惩罚,用于控制稀疏性或Ω中的零个数。我们提出了一种新的估计器,称为结构GLASSO(SGLASSO),它使用混合范数。对Ω中稀疏性结构的惩罚控制的使用。我们证明了当网络大小固定时,SGLASSO渐近等价于一个不可行的GLSSO问题,该问题优先考虑高阶节点的稀疏性恢复。蒙特卡罗模拟表明,SGLASSO在估计总体精度矩阵和估计图形模型结构方面优于GLSSO。在使用经典企业投资数据集的实证说明中,我们获得了一个企业依赖性网络,该网络呈现出核心-外围结构,通用汽车、通用电气和美国钢铁公司构成了核心企业群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Econometrics Journal
Econometrics Journal 管理科学-数学跨学科应用
CiteScore
4.20
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信