{"title":"An efficient skin cancer detection and classification using Improved Adaboost Aphid–Ant Mutualism model","authors":"G. Renith, A. Senthilselvi","doi":"10.1002/ima.22932","DOIUrl":null,"url":null,"abstract":"Skin cancer is the most common deadly disease caused due to abnormal and uncontrolled growth of cells in the human body. According to a report, annually nearly one million people are affected by skin cancer worldwide. To protect human lives from such life‐threatening diseases, early identification of skin cancer is the only precautionary measure. In recent times, there already exist numerous automated techniques to detect and classify skin lesion malignancies using dermoscopic images. However, analyzing the dermoscopic images becomes an arduous task due to the presence of troublesome features such as light reflections, illumination variations, and uneven shape and dimension. To address the challenges faced during skin cancer recognition process, in this paper, we proposed an efficient intelligent automated system to detect and discriminate the dermoscopic images into malignant or benign. The proposed skin cancer detection model utilizes the HAM10000 dataset for evaluation. The dermoscopic images acquired from the HAM10000 dataset are initially preprocessed to enhance the quality of image and thus making it fit to train the classifier. Afterward, the most significant image patterns are extracted by the AlexNet architecture without any loss of detailed information. Later on, the extracted features are inputted to the proposed Improved Adaboost‐based Aphid–Ant Mutualism (IAB‐AAM) classification model to discriminate the images into malignant and benign categories. The proposed IAB‐AAM approach witnessed extensive enhancement in classification accuracy. The enhanced performance is attributed by integrating the AAM optimization concept with the IAB model. By comparing the performance of the proposed IAB‐AAM with other modern methods in terms of different evaluation indicators namely accuracy, precision, specificity, sensitivity, and f‐measure, the efficiency of the proposed IAB‐AAM technique is analyzed. From the experimental results, it is known that the proposed IAB‐AAM technique attains a greater accuracy rate of 95.7% in detecting skin cancer classes than other compared approaches.","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"33 6","pages":"1957-1972"},"PeriodicalIF":3.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.22932","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Skin cancer is the most common deadly disease caused due to abnormal and uncontrolled growth of cells in the human body. According to a report, annually nearly one million people are affected by skin cancer worldwide. To protect human lives from such life‐threatening diseases, early identification of skin cancer is the only precautionary measure. In recent times, there already exist numerous automated techniques to detect and classify skin lesion malignancies using dermoscopic images. However, analyzing the dermoscopic images becomes an arduous task due to the presence of troublesome features such as light reflections, illumination variations, and uneven shape and dimension. To address the challenges faced during skin cancer recognition process, in this paper, we proposed an efficient intelligent automated system to detect and discriminate the dermoscopic images into malignant or benign. The proposed skin cancer detection model utilizes the HAM10000 dataset for evaluation. The dermoscopic images acquired from the HAM10000 dataset are initially preprocessed to enhance the quality of image and thus making it fit to train the classifier. Afterward, the most significant image patterns are extracted by the AlexNet architecture without any loss of detailed information. Later on, the extracted features are inputted to the proposed Improved Adaboost‐based Aphid–Ant Mutualism (IAB‐AAM) classification model to discriminate the images into malignant and benign categories. The proposed IAB‐AAM approach witnessed extensive enhancement in classification accuracy. The enhanced performance is attributed by integrating the AAM optimization concept with the IAB model. By comparing the performance of the proposed IAB‐AAM with other modern methods in terms of different evaluation indicators namely accuracy, precision, specificity, sensitivity, and f‐measure, the efficiency of the proposed IAB‐AAM technique is analyzed. From the experimental results, it is known that the proposed IAB‐AAM technique attains a greater accuracy rate of 95.7% in detecting skin cancer classes than other compared approaches.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.