{"title":"MultiPsi: A python-driven MCSCF program for photochemistry and spectroscopy simulations on modern HPC environments","authors":"Mickaël G. Delcey","doi":"10.1002/wcms.1675","DOIUrl":null,"url":null,"abstract":"<p>We present MultiPsi, an open-source MCSCF program for the calculation of ground and excited states properties of strongly correlated systems. The program currently implements a general MCSCF code with excited states available using either state-averaging or linear response. It is written in a highly modular fashion using Python/C++ which makes it well suited as a development platform, enabling easy prototyping of novel methods, and as a teaching tool using interactive notebooks. The code is also very efficient and designed for modern high-performance computing environments using hybrid OpenMP/MPI parallelization. This efficiency is demonstrated with the calculation of the CASSCF energy and linear response of a molecule with more than 700 atoms as well as a fully optimized conventional CI calculation on more than 400 billion determinants.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"13 6","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1675","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
We present MultiPsi, an open-source MCSCF program for the calculation of ground and excited states properties of strongly correlated systems. The program currently implements a general MCSCF code with excited states available using either state-averaging or linear response. It is written in a highly modular fashion using Python/C++ which makes it well suited as a development platform, enabling easy prototyping of novel methods, and as a teaching tool using interactive notebooks. The code is also very efficient and designed for modern high-performance computing environments using hybrid OpenMP/MPI parallelization. This efficiency is demonstrated with the calculation of the CASSCF energy and linear response of a molecule with more than 700 atoms as well as a fully optimized conventional CI calculation on more than 400 billion determinants.
期刊介绍:
Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.