Zhaobin Chang, Yonggang Lu, Xingcheng Ran, Xiong Gao, Hong Zhao
{"title":"Simple yet effective joint guidance learning for few-shot semantic segmentation","authors":"Zhaobin Chang, Yonggang Lu, Xingcheng Ran, Xiong Gao, Hong Zhao","doi":"10.1007/s10489-023-04937-2","DOIUrl":null,"url":null,"abstract":"<div><p>Fully-supervised semantic segmentation methods are difficult to generalize to novel objects, and their fine-tuning often requires a sufficient number of fully-labeled images. Few-shot semantic segmentation (FSS) has recently attracted lots of attention due to its excellent capability for segmenting the novel object with only a few labeled images. Most of recent approaches follow the prototype learning paradigm and have made a significant improvement in segmentation performance. However, there exist two critical bottleneck problems to be solved. (1) Previous methods mainly focus on mining the foreground information of the target object, and class-specific prototypes are generated by solely leveraging average operation on the whole support image, which may lead to information loss, underutilization, or semantic confusion of the object. (2) Most existing methods unilaterally guide the object segmentation in the query image with support images, which may result in semantic misalignment due to the diversity of objects in the support and query sets. To alleviate the above challenging problems, we propose a simple yet effective joint guidance learning architecture to generate and align more compact and robust prototypes from two aspects. (1) We propose a coarse-to-fine prototype generation module to generate coarse-grained foreground prototypes and fine-grained background prototypes. (2) We design a joint guidance learning module for the prototype evaluation and optimization on both support and query images. Extensive experiments show that the proposed method can achieve superior segmentation results on PASCAL-5<span>\\(^{i}\\)</span> and COCO-20<span>\\(^{i}\\)</span> datasets.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"53 22","pages":"26603 - 26621"},"PeriodicalIF":3.4000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-023-04937-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Fully-supervised semantic segmentation methods are difficult to generalize to novel objects, and their fine-tuning often requires a sufficient number of fully-labeled images. Few-shot semantic segmentation (FSS) has recently attracted lots of attention due to its excellent capability for segmenting the novel object with only a few labeled images. Most of recent approaches follow the prototype learning paradigm and have made a significant improvement in segmentation performance. However, there exist two critical bottleneck problems to be solved. (1) Previous methods mainly focus on mining the foreground information of the target object, and class-specific prototypes are generated by solely leveraging average operation on the whole support image, which may lead to information loss, underutilization, or semantic confusion of the object. (2) Most existing methods unilaterally guide the object segmentation in the query image with support images, which may result in semantic misalignment due to the diversity of objects in the support and query sets. To alleviate the above challenging problems, we propose a simple yet effective joint guidance learning architecture to generate and align more compact and robust prototypes from two aspects. (1) We propose a coarse-to-fine prototype generation module to generate coarse-grained foreground prototypes and fine-grained background prototypes. (2) We design a joint guidance learning module for the prototype evaluation and optimization on both support and query images. Extensive experiments show that the proposed method can achieve superior segmentation results on PASCAL-5\(^{i}\) and COCO-20\(^{i}\) datasets.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.