Yuanjun Dai, Yiran An, Zhi Li, Jihua Zhang, Chao Yu
{"title":"Fourier neural operator with boundary conditions for efficient prediction of steady airfoil flows","authors":"Yuanjun Dai, Yiran An, Zhi Li, Jihua Zhang, Chao Yu","doi":"10.1007/s10483-023-3050-9","DOIUrl":null,"url":null,"abstract":"<div><p>An efficient data-driven approach for predicting steady airfoil flows is proposed based on the Fourier neural operator (FNO), which is a new framework of neural networks. Theoretical reasons and experimental results are provided to support the necessity and effectiveness of the improvements made to the FNO, which involve using an additional branch neural operator to approximate the contribution of boundary conditions to steady solutions. The proposed approach runs several orders of magnitude faster than the traditional numerical methods. The predictions for flows around airfoils and ellipses demonstrate the superior accuracy and impressive speed of this novel approach. Furthermore, the property of zero-shot super-resolution enables the proposed approach to overcome the limitations of predicting airfoil flows with Cartesian grids, thereby improving the accuracy in the near-wall region. There is no doubt that the unprecedented speed and accuracy in forecasting steady airfoil flows have massive benefits for airfoil design and optimization.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 11","pages":"2019 - 2038"},"PeriodicalIF":4.5000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-3050-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
An efficient data-driven approach for predicting steady airfoil flows is proposed based on the Fourier neural operator (FNO), which is a new framework of neural networks. Theoretical reasons and experimental results are provided to support the necessity and effectiveness of the improvements made to the FNO, which involve using an additional branch neural operator to approximate the contribution of boundary conditions to steady solutions. The proposed approach runs several orders of magnitude faster than the traditional numerical methods. The predictions for flows around airfoils and ellipses demonstrate the superior accuracy and impressive speed of this novel approach. Furthermore, the property of zero-shot super-resolution enables the proposed approach to overcome the limitations of predicting airfoil flows with Cartesian grids, thereby improving the accuracy in the near-wall region. There is no doubt that the unprecedented speed and accuracy in forecasting steady airfoil flows have massive benefits for airfoil design and optimization.
期刊介绍:
Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China.
Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.