Zhaoxi Liu, Mingchen Ge, Qianqian Wang, Xuejing Wang, Kai Xiao, Gang Li, Hailong Li
{"title":"Spatial distribution and export of nutrients and metal elements in the subterranean estuary of Daya Bay","authors":"Zhaoxi Liu, Mingchen Ge, Qianqian Wang, Xuejing Wang, Kai Xiao, Gang Li, Hailong Li","doi":"10.1007/s13131-023-2212-8","DOIUrl":null,"url":null,"abstract":"<div><p>Subterranean estuaries (STE) are important seawater-groundwater mixing zones with complex biogeochemical processes, which play a vital role in the migration and transformation of dissolved materials. In this study, we first investigated the spatial distributions of dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorous (DIP), dissolved inorganic silicon (DSi) and metal elements (As, Ba, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in STE including upper intertidal, seepage face and subtidal zones. We then estimated submarine groundwater discharge (SGD) and associated nutrient and metal element fluxes. From the generalized Darcy’s law method, SGD was estimated to be 30.13 cm/d, which was about 7 times larger than the inflow (4.16 cm/d). The nutrient and metal fluxes from SGD were estimated to be (5.33 ± 4.99) mmol/(m<sup>2</sup>·d) for DIN, (0.22 ± 0.03) mmol/(m<sup>2</sup>·d) for DIP, (16.20 ± 2.05) mmol/(m<sup>2</sup>·d) for DSi, (1 325.06 ± 99.10) μmol/(m<sup>2</sup>·d) for Fe, (143.41 ± 25.13) μmol/(m<sup>2</sup>·d) for Mn, (304.06 ± 81.07) μmol/(m<sup>2</sup>·d) for Zn, (140.21 ± 13.33) μmol/(m<sup>2</sup>·d) for Cu, (84.49 ± 2.94) μmol/(m<sup>2</sup>·d) for Pb, (37.38 ± 5.51) μmol/(m<sup>2</sup>·d) for Ba, (27.88 ± 3.89) μmol/(m<sup>2</sup>·d) for Cr, (10.10 ± 6.33) μmol/(m<sup>2</sup>·d) for Ni, and (6.25 ± 3.45) μmol/(m<sup>2</sup>·d) for As. The nutrient and metal fluxes from SGD were relatively higher than those from the inflow, suggesting that nearshore groundwater acted as the sources of nutrients and metal elements discharging into the sea. The environmental potential pollution of coastal seawater was evaluated by pollution factor index (<i>P</i><sub><i>i</i></sub>), comprehensive water quality index (CWQI), and ecological risk index (ERI). Pb mainly caused potential danger of nearshore environment with considerable contamination (<i>P</i><sub><i>i</i></sub> = 5.78 ± 0.19), heavy pollution (CWQI = 4.09) and high ecological risk (ERI = 18.00). This study contributed to better understanding the behavior of nutrients and metal elements and improving the sustainable management of STE under the pressure of anthropogenic activities and climate change.</p></div>","PeriodicalId":6922,"journal":{"name":"Acta Oceanologica Sinica","volume":"42 8","pages":"77 - 86"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Oceanologica Sinica","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s13131-023-2212-8","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Subterranean estuaries (STE) are important seawater-groundwater mixing zones with complex biogeochemical processes, which play a vital role in the migration and transformation of dissolved materials. In this study, we first investigated the spatial distributions of dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorous (DIP), dissolved inorganic silicon (DSi) and metal elements (As, Ba, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in STE including upper intertidal, seepage face and subtidal zones. We then estimated submarine groundwater discharge (SGD) and associated nutrient and metal element fluxes. From the generalized Darcy’s law method, SGD was estimated to be 30.13 cm/d, which was about 7 times larger than the inflow (4.16 cm/d). The nutrient and metal fluxes from SGD were estimated to be (5.33 ± 4.99) mmol/(m2·d) for DIN, (0.22 ± 0.03) mmol/(m2·d) for DIP, (16.20 ± 2.05) mmol/(m2·d) for DSi, (1 325.06 ± 99.10) μmol/(m2·d) for Fe, (143.41 ± 25.13) μmol/(m2·d) for Mn, (304.06 ± 81.07) μmol/(m2·d) for Zn, (140.21 ± 13.33) μmol/(m2·d) for Cu, (84.49 ± 2.94) μmol/(m2·d) for Pb, (37.38 ± 5.51) μmol/(m2·d) for Ba, (27.88 ± 3.89) μmol/(m2·d) for Cr, (10.10 ± 6.33) μmol/(m2·d) for Ni, and (6.25 ± 3.45) μmol/(m2·d) for As. The nutrient and metal fluxes from SGD were relatively higher than those from the inflow, suggesting that nearshore groundwater acted as the sources of nutrients and metal elements discharging into the sea. The environmental potential pollution of coastal seawater was evaluated by pollution factor index (Pi), comprehensive water quality index (CWQI), and ecological risk index (ERI). Pb mainly caused potential danger of nearshore environment with considerable contamination (Pi = 5.78 ± 0.19), heavy pollution (CWQI = 4.09) and high ecological risk (ERI = 18.00). This study contributed to better understanding the behavior of nutrients and metal elements and improving the sustainable management of STE under the pressure of anthropogenic activities and climate change.
期刊介绍:
Founded in 1982, Acta Oceanologica Sinica is the official bi-monthly journal of the Chinese Society of Oceanography. It seeks to provide a forum for research papers in the field of oceanography from all over the world. In working to advance scholarly communication it has made the fast publication of high-quality research papers within this field its primary goal.
The journal encourages submissions from all branches of oceanography, including marine physics, marine chemistry, marine geology, marine biology, marine hydrology, marine meteorology, ocean engineering, marine remote sensing and marine environment sciences.
It publishes original research papers, review articles as well as research notes covering the whole spectrum of oceanography. Special issues emanating from related conferences and meetings are also considered. All papers are subject to peer review and are published online at SpringerLink.