Quantum computation of phase transition in interacting scalar quantum field theory

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Shane Thompson, George Siopsis
{"title":"Quantum computation of phase transition in interacting scalar quantum field theory","authors":"Shane Thompson,&nbsp;George Siopsis","doi":"10.1007/s11128-023-04149-0","DOIUrl":null,"url":null,"abstract":"<div><p>It has been demonstrated that the critical point of the phase transition in scalar quantum field theory with a quartic interaction in one space dimension can be approximated via a Gaussian Effective Potential (GEP). We discuss how this critical point can be estimated using quantum hardware. Performing quantum computations with various lattice sizes, we obtain evidence of a transition from a symmetric to a symmetry-broken phase using both discrete- and continuous-variable quantum computation. The ten-site case is implemented on IBM quantum hardware using the Variational Quantum Eigensolver algorithm to minimize the GEP and identify lattice level crossings. These are extrapolated via simulations to find the continuum critical point.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"22 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-023-04149-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

Abstract

It has been demonstrated that the critical point of the phase transition in scalar quantum field theory with a quartic interaction in one space dimension can be approximated via a Gaussian Effective Potential (GEP). We discuss how this critical point can be estimated using quantum hardware. Performing quantum computations with various lattice sizes, we obtain evidence of a transition from a symmetric to a symmetry-broken phase using both discrete- and continuous-variable quantum computation. The ten-site case is implemented on IBM quantum hardware using the Variational Quantum Eigensolver algorithm to minimize the GEP and identify lattice level crossings. These are extrapolated via simulations to find the continuum critical point.

Abstract Image

相互作用标量量子场论中相变的量子计算
已经证明,在一维四次相互作用的标量量子场论中,相变的临界点可以通过高斯有效势(GEP)来近似。我们讨论了如何使用量子硬件来估计这个临界点。在进行各种晶格尺寸的量子计算时,我们使用离散和连续变量量子计算获得了从对称断相到对称断相转变的证据。使用变分量子特征解算器算法在IBM量子硬件上实现了十个站点的情况,以最小化GEP并识别晶格能级交叉。这些是通过模拟来推断的,以找到连续体的临界点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信