Annual and Periodic Variations of Particulates and Selected Gaseous Pollutants in Astana, Kazakhstan: Source Identification via Conditional Bivariate Probability Function
Akmaral Agibayeva, Ferhat Karaca, Mert Guney, Torekhan Bex, Egemen Avcu
{"title":"Annual and Periodic Variations of Particulates and Selected Gaseous Pollutants in Astana, Kazakhstan: Source Identification via Conditional Bivariate Probability Function","authors":"Akmaral Agibayeva, Ferhat Karaca, Mert Guney, Torekhan Bex, Egemen Avcu","doi":"10.1007/s41810-023-00194-5","DOIUrl":null,"url":null,"abstract":"<div><p>The degradation of air quality remains one of the most pressing environmental issues as exposure to air pollutants is extensively associated with various health problems including respiratory and cardiovascular diseases. The present study aims to (1) reveal the annual and periodic variations of PM<sub>2.5</sub>, total suspended particles, and selected gaseous pollutants (SO<sub>2</sub>, CO, NO<sub>2</sub>, HF) in Astana, Kazakhstan by analyzing 2-year air pollution monitoring data (October 2018–September 2020) divided into two study cycles (October 2018–September 2019 and October 2019–September 2020, respectively); and to (2) identify potential air pollution sources in the region using conditional bivariate probability function (CBPF). Annual concentrations of PM<sub>2.5</sub> and other gaseous pollutants were generally high, exceeding World Health Organization air quality guidelines and nationally adopted air quality standards, with heating periods (October–April) characterized, on average, by higher ambient concentrations than non-heating periods. Notably, the concentrations of observed pollutants were higher during the 2018–2019 study cycle than in 2019–2020. Obtained results are useful for subsequent estimation of the burden of respiratory and cardiovascular diseases in the region. The CBPF analysis of PM<sub>2.5</sub> data suggested a general contribution of the coal-fired power plants as well as residential heating activities to the air pollution in the city, while a joint contribution of vehicular emissions and power plant activity was identified as the pollution source of SO<sub>2</sub>. Control measures for PM<sub>2.5</sub> and SO<sub>2</sub> emissions specifically arising from the coal-fired power plants need to be urgently implemented.</p></div>","PeriodicalId":36991,"journal":{"name":"Aerosol Science and Engineering","volume":"7 4","pages":"502 - 516"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s41810-023-00194-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The degradation of air quality remains one of the most pressing environmental issues as exposure to air pollutants is extensively associated with various health problems including respiratory and cardiovascular diseases. The present study aims to (1) reveal the annual and periodic variations of PM2.5, total suspended particles, and selected gaseous pollutants (SO2, CO, NO2, HF) in Astana, Kazakhstan by analyzing 2-year air pollution monitoring data (October 2018–September 2020) divided into two study cycles (October 2018–September 2019 and October 2019–September 2020, respectively); and to (2) identify potential air pollution sources in the region using conditional bivariate probability function (CBPF). Annual concentrations of PM2.5 and other gaseous pollutants were generally high, exceeding World Health Organization air quality guidelines and nationally adopted air quality standards, with heating periods (October–April) characterized, on average, by higher ambient concentrations than non-heating periods. Notably, the concentrations of observed pollutants were higher during the 2018–2019 study cycle than in 2019–2020. Obtained results are useful for subsequent estimation of the burden of respiratory and cardiovascular diseases in the region. The CBPF analysis of PM2.5 data suggested a general contribution of the coal-fired power plants as well as residential heating activities to the air pollution in the city, while a joint contribution of vehicular emissions and power plant activity was identified as the pollution source of SO2. Control measures for PM2.5 and SO2 emissions specifically arising from the coal-fired power plants need to be urgently implemented.
期刊介绍:
ASE is an international journal that publishes high-quality papers, communications, and discussion that advance aerosol science and engineering. Acceptable article forms include original research papers, review articles, letters, commentaries, news and views, research highlights, editorials, correspondence, and new-direction columns. ASE emphasizes the application of aerosol technology to both environmental and technical issues, and it provides a platform not only for basic research but also for industrial interests. We encourage scientists and researchers to submit papers that will advance our knowledge of aerosols and highlight new approaches for aerosol studies and new technologies for pollution control. ASE promotes cutting-edge studies of aerosol science and state-of-art instrumentation, but it is not limited to academic topics and instead aims to bridge the gap between basic science and industrial applications. ASE accepts papers covering a broad range of aerosol-related topics, including aerosol physical and chemical properties, composition, formation, transport and deposition, numerical simulation of air pollution incidents, chemical processes in the atmosphere, aerosol control technologies and industrial applications. In addition, ASE welcomes papers involving new and advanced methods and technologies that focus on aerosol pollution, sampling and analysis, including the invention and development of instrumentation, nanoparticle formation, nano technology, indoor and outdoor air quality monitoring, air pollution control, and air pollution remediation and feasibility assessments.