{"title":"Estimation of Particle Emission Rates and Calculation of Human Dose from Arc Welding and Cutting of Stainless Steel in a Simulated Confined Workspace","authors":"Norbert Serfozo, Mihalis Lazaridis","doi":"10.1007/s41810-023-00192-7","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this study was to estimate the particle emission rates, human dose and retention from two arc welding processes and cutting of stainless steel. The two arc welding processes were Shielded Metal Arc Welding (SMAW) and Tungsten Inert Gas (TIG). In a simulated confined workspace of experimental chamber under controlled conditions, four different scenarios were considered, including the use of filtering face piece respirator (FFR), leaving or staying in the workspace after the emission. Deposited and retained dose in the respiratory tract was assessed for the different regions of the human respiratory tract using a dosimetry model (ExDoM2). The three investigated processes generated high particle number concentrations ranging from 2.4 to 3.6 × 10<sup>6</sup> particles/cm<sup>3</sup> and were the highest during TIG. Among all three processes, PM<sub>10</sub> concentrations from cutting reached the highest levels [11 and 22 (× 10<sup>3</sup>) μg/m<sup>3</sup>], while SMAW had the highest contribution of fine particles [~ 4.1 (× 10<sup>3</sup>) μg/m<sup>3</sup>], consisting mostly of PM<sub>1–2.5</sub>. The examination of different scenarios revealed that there is only a slight difference in respect to deposited dose while staying in the workspace for the entire investigated time period (4 h) with or without use of Filtering Facepiece Respirator (FFR). It would be more beneficial in respect to deposited dose if the exposed subject was not wearing a FFR during the emission process and would leave the polluted workspace immediately after the emission period. In the first two scenarios (staying 4 h in the polluted workspace with and without FFR), both welding processes had higher cumulative deposited (~ 23%) and retained dose (~ 20%) in thoracic region compared to cutting (~ 9% and ~ 7%). These results demonstrate that even a short emission period can cause a considerable increase in concentrations of harmful respirable particles, thus increasing the human dose. The approach applied in this study could be used for the determination of personal exposure and dose to particles of known composition particularly in confined workspaces.</p></div>","PeriodicalId":36991,"journal":{"name":"Aerosol Science and Engineering","volume":"7 4","pages":"474 - 487"},"PeriodicalIF":1.6000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s41810-023-00192-7","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
The objective of this study was to estimate the particle emission rates, human dose and retention from two arc welding processes and cutting of stainless steel. The two arc welding processes were Shielded Metal Arc Welding (SMAW) and Tungsten Inert Gas (TIG). In a simulated confined workspace of experimental chamber under controlled conditions, four different scenarios were considered, including the use of filtering face piece respirator (FFR), leaving or staying in the workspace after the emission. Deposited and retained dose in the respiratory tract was assessed for the different regions of the human respiratory tract using a dosimetry model (ExDoM2). The three investigated processes generated high particle number concentrations ranging from 2.4 to 3.6 × 106 particles/cm3 and were the highest during TIG. Among all three processes, PM10 concentrations from cutting reached the highest levels [11 and 22 (× 103) μg/m3], while SMAW had the highest contribution of fine particles [~ 4.1 (× 103) μg/m3], consisting mostly of PM1–2.5. The examination of different scenarios revealed that there is only a slight difference in respect to deposited dose while staying in the workspace for the entire investigated time period (4 h) with or without use of Filtering Facepiece Respirator (FFR). It would be more beneficial in respect to deposited dose if the exposed subject was not wearing a FFR during the emission process and would leave the polluted workspace immediately after the emission period. In the first two scenarios (staying 4 h in the polluted workspace with and without FFR), both welding processes had higher cumulative deposited (~ 23%) and retained dose (~ 20%) in thoracic region compared to cutting (~ 9% and ~ 7%). These results demonstrate that even a short emission period can cause a considerable increase in concentrations of harmful respirable particles, thus increasing the human dose. The approach applied in this study could be used for the determination of personal exposure and dose to particles of known composition particularly in confined workspaces.
期刊介绍:
ASE is an international journal that publishes high-quality papers, communications, and discussion that advance aerosol science and engineering. Acceptable article forms include original research papers, review articles, letters, commentaries, news and views, research highlights, editorials, correspondence, and new-direction columns. ASE emphasizes the application of aerosol technology to both environmental and technical issues, and it provides a platform not only for basic research but also for industrial interests. We encourage scientists and researchers to submit papers that will advance our knowledge of aerosols and highlight new approaches for aerosol studies and new technologies for pollution control. ASE promotes cutting-edge studies of aerosol science and state-of-art instrumentation, but it is not limited to academic topics and instead aims to bridge the gap between basic science and industrial applications. ASE accepts papers covering a broad range of aerosol-related topics, including aerosol physical and chemical properties, composition, formation, transport and deposition, numerical simulation of air pollution incidents, chemical processes in the atmosphere, aerosol control technologies and industrial applications. In addition, ASE welcomes papers involving new and advanced methods and technologies that focus on aerosol pollution, sampling and analysis, including the invention and development of instrumentation, nanoparticle formation, nano technology, indoor and outdoor air quality monitoring, air pollution control, and air pollution remediation and feasibility assessments.