D. L. Reviznikov, A. V. Nenarokomov, M. S. Konstantinov, I. A. Nikolichev, A. V. Morzhukhina, L. M. Chernova
{"title":"Calculation of Heat Loads in Analysis of Superorbital Entry of Spacecraft into Atmosphere of the Earth","authors":"D. L. Reviznikov, A. V. Nenarokomov, M. S. Konstantinov, I. A. Nikolichev, A. V. Morzhukhina, L. M. Chernova","doi":"10.1134/S1810232823030050","DOIUrl":null,"url":null,"abstract":"<p>Correlations for calculation of heat loads during a return of spacecraft at the second cosmic velocity are given. Analysis of the heat transfer for a model descent trajectory has been carried out. The convective and radiative heat fluxes, the relative heat transfer coefficient, and the radiative-equilibrium surface temperature have been calculated. The results obtained are a basis for design and optimization of the heat shield of spacecraft.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"32 3","pages":"467 - 481"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232823030050","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Correlations for calculation of heat loads during a return of spacecraft at the second cosmic velocity are given. Analysis of the heat transfer for a model descent trajectory has been carried out. The convective and radiative heat fluxes, the relative heat transfer coefficient, and the radiative-equilibrium surface temperature have been calculated. The results obtained are a basis for design and optimization of the heat shield of spacecraft.
期刊介绍:
Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.