K. V. Gets, R. K. Zhdanov, Y. Y. Bozhko, O. S. Subbotin, V. R. Belosludov
{"title":"Theoretical Study of Formation of Hydrates from High-Concentration Metastable Solution of Carbon Dioxide in Water at Various Gas Concentrations","authors":"K. V. Gets, R. K. Zhdanov, Y. Y. Bozhko, O. S. Subbotin, V. R. Belosludov","doi":"10.1134/S1810232823030074","DOIUrl":null,"url":null,"abstract":"<p>This work presents a study of a range of carbon dioxide concentrations at which gas hydrate growth is observed in a homogeneous nonequilibrium solution. The study was done by the method of molecular dynamics. Calculation of the potential energy, tetrahedral order parameter F<sub>3</sub> and the number of hydrate cavities has shown that a steady growth occurs at carbon dioxide concentrations of 4.94–12.20 mol. %. At lower concentrations, there are no significant changes in the structure of the solution over the considered time interval. At higher concentrations of carbon dioxide in a supersaturated solution, separation into the gas phase and saturated solution is observed.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"32 3","pages":"502 - 507"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232823030074","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a study of a range of carbon dioxide concentrations at which gas hydrate growth is observed in a homogeneous nonequilibrium solution. The study was done by the method of molecular dynamics. Calculation of the potential energy, tetrahedral order parameter F3 and the number of hydrate cavities has shown that a steady growth occurs at carbon dioxide concentrations of 4.94–12.20 mol. %. At lower concentrations, there are no significant changes in the structure of the solution over the considered time interval. At higher concentrations of carbon dioxide in a supersaturated solution, separation into the gas phase and saturated solution is observed.
期刊介绍:
Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.