On a super polyharmonic property of a higher-order fractional Laplacian

IF 1.2 4区 数学 Q1 MATHEMATICS
Meiqing Xu
{"title":"On a super polyharmonic property of a higher-order fractional Laplacian","authors":"Meiqing Xu","doi":"10.1007/s10473-023-0616-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let 0 &lt; <i>α</i> &lt; 2, <i>p</i> ≥ 1, m ∞ ℕ<sub>+</sub>. Consider the positive solution <i>u</i> of the PDE </p><div><div><span>$${(- \\Delta)^{{\\alpha \\over 2} + m}}u(x) = {u^p}(x)\\,\\,\\,{\\rm{in}}\\,\\,{\\mathbb{R}^n}.$$</span></div><div>\n ((0.1))\n </div></div><p> In [1] (Transactions of the American Mathematical Society, 2021), Cao, Dai and Qin showed that, under the condition <span>\\(u \\in {{\\cal L}_\\alpha}\\)</span>, (0.1) possesses a super polyharmonic property <span>\\({(- \\Delta)^{k + {\\alpha \\over 2}}}u \\ge 0\\)</span> for <i>k</i> = 0,1, ⋯, <i>m</i> − 1. In this paper, we show another kind of super polyharmonic property (−Δ)<sup><i>k</i></sup><i>u</i> &gt; 0 for <i>k</i> = 1, ⋯, <i>m</i> − 1, under the conditions <span>\\({(- \\Delta)^m}u \\in {{\\cal L}_\\alpha}\\)</span> and (−Δ)<sup><i>m</i></sup><i>u</i> ≥ 0. Both kinds of super polyharmonic properties can lead to an equivalence between (0.1) and the integral equation <span>\\(u(x) = \\int_{{\\mathbb{R}^n}} {{{{u^p}(y)} \\over {|x - y{|^{n - 2m - \\alpha}}}}{\\rm{d}}y} \\)</span>. One can classify solutions to (0.1) following the work of [2] and [3] by Chen, Li, Ou.</p></div>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"43 6","pages":"2589 - 2596"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s10473-023-0616-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let 0 < α < 2, p ≥ 1, m ∞ ℕ+. Consider the positive solution u of the PDE

$${(- \Delta)^{{\alpha \over 2} + m}}u(x) = {u^p}(x)\,\,\,{\rm{in}}\,\,{\mathbb{R}^n}.$$
((0.1))

In [1] (Transactions of the American Mathematical Society, 2021), Cao, Dai and Qin showed that, under the condition \(u \in {{\cal L}_\alpha}\), (0.1) possesses a super polyharmonic property \({(- \Delta)^{k + {\alpha \over 2}}}u \ge 0\) for k = 0,1, ⋯, m − 1. In this paper, we show another kind of super polyharmonic property (−Δ)ku > 0 for k = 1, ⋯, m − 1, under the conditions \({(- \Delta)^m}u \in {{\cal L}_\alpha}\) and (−Δ)mu ≥ 0. Both kinds of super polyharmonic properties can lead to an equivalence between (0.1) and the integral equation \(u(x) = \int_{{\mathbb{R}^n}} {{{{u^p}(y)} \over {|x - y{|^{n - 2m - \alpha}}}}{\rm{d}}y} \). One can classify solutions to (0.1) following the work of [2] and [3] by Chen, Li, Ou.

关于一个高阶分数拉普拉斯算子的超多谐性质
设0<;α<;2,p≥1,m∞ℕ+. 考虑PDE$${(-\Delta)^{{\alpha\在2}+m}}上}u(x)={u^p}(x)\,\,\{\rm{in}\,\、{\mathbb{R}^n}的正解u。$$(0.1)在[1](《美国数学会汇刊》,2021)中,曹、戴和秦证明,在条件\(u \ In{\cal L}_\alpha})下,(0.1)对于k=0,1,…,m−1具有超多谐性质\({(-\Delta)^{k+{\alpha \ over 2}}}}u \ ge 0\)。本文给出了另一类超多谐性质(-Δ)ku>;在条件\({(-\Δ)^m}u\ in{{\cal L}_\alpha}\)和(-Δ)mu≥0的情况下,当k=1,…,m−1时为0。这两种超多谐性质都可以导致(0.1)和积分方程\(u(x)=\int_{\mathbb{R}^n}}{{(u ^p}(y)}\在{|x-y{|^{n-2m-\alpha}}}}}}{\rm{d}y}\)之间的等价。根据Chen,Li,Ou的[2]和[3]的工作,可以对(0.1)的解进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信