A multiple q-exponential differential operational identity

IF 1.2 4区 数学 Q1 MATHEMATICS
Zhiguo Liu
{"title":"A multiple q-exponential differential operational identity","authors":"Zhiguo Liu","doi":"10.1007/s10473-023-0608-3","DOIUrl":null,"url":null,"abstract":"<div><p>Using Hartogs’ fundamental theorem for analytic functions in several complex variables and <i>q</i>-partial differential equations, we establish a multiple <i>q</i>-exponential differential formula for analytic functions in several variables. With this identity, we give new proofs of a variety of important classical formulas including Bailey’s <sub>6</sub><i>ψ</i><sub>6</sub> series summation formula and the Atakishiyev integral. A new transformation formula for a double <i>q</i>-series with several interesting special cases is given. A new transformation formula for a <sub>3</sub><i>ψ</i><sub>3</sub> series is proved.</p></div>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"43 6","pages":"2449 - 2470"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s10473-023-0608-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Using Hartogs’ fundamental theorem for analytic functions in several complex variables and q-partial differential equations, we establish a multiple q-exponential differential formula for analytic functions in several variables. With this identity, we give new proofs of a variety of important classical formulas including Bailey’s 6ψ6 series summation formula and the Atakishiyev integral. A new transformation formula for a double q-series with several interesting special cases is given. A new transformation formula for a 3ψ3 series is proved.

多重q指数微分运算恒等式
利用多复变量解析函数的Hartogs基本定理和q偏微分方程,建立了多复变量分析函数的多重q指数微分公式。利用这个恒等式,我们给出了许多重要经典公式的新证明,包括Bailey的6ψ6级数求和公式和Atakishiyev积分。给出了双q级数的一个新的变换公式,它有几个有趣的特例。证明了一个新的3ψ3级数的变换公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信