The semiclassical limit of a quantum Zeno dynamics

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Fabio Deelan Cunden, Paolo Facchi, Marilena Ligabò
{"title":"The semiclassical limit of a quantum Zeno dynamics","authors":"Fabio Deelan Cunden,&nbsp;Paolo Facchi,&nbsp;Marilena Ligabò","doi":"10.1007/s11005-023-01730-7","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by a quantum Zeno dynamics in a cavity quantum electrodynamics setting, we study the asymptotics of a family of symbols corresponding to a truncated momentum operator, in the semiclassical limit of vanishing Planck constant <span>\\(\\hbar \\rightarrow 0\\)</span> and large quantum number <span>\\(N\\rightarrow \\infty \\)</span>, with <span>\\(\\hbar N\\)</span> kept fixed. In a suitable topology, the limit is the discontinuous symbol <span>\\(p\\chi _D(x,p)\\)</span> where <span>\\(\\chi _D\\)</span> is the characteristic function of the classically permitted region <i>D</i> in phase space. A refined analysis shows that the symbol is asymptotically close to the function <span>\\(p\\chi _D^{(N)}(x,p)\\)</span>, where <span>\\(\\chi _D^{(N)}\\)</span> is a smooth version of <span>\\(\\chi _D\\)</span> related to the integrated Airy function. We also discuss the limit from a dynamical point of view.\n</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"113 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-023-01730-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by a quantum Zeno dynamics in a cavity quantum electrodynamics setting, we study the asymptotics of a family of symbols corresponding to a truncated momentum operator, in the semiclassical limit of vanishing Planck constant \(\hbar \rightarrow 0\) and large quantum number \(N\rightarrow \infty \), with \(\hbar N\) kept fixed. In a suitable topology, the limit is the discontinuous symbol \(p\chi _D(x,p)\) where \(\chi _D\) is the characteristic function of the classically permitted region D in phase space. A refined analysis shows that the symbol is asymptotically close to the function \(p\chi _D^{(N)}(x,p)\), where \(\chi _D^{(N)}\) is a smooth version of \(\chi _D\) related to the integrated Airy function. We also discuss the limit from a dynamical point of view.

Abstract Image

量子芝诺动力学的半经典极限
在腔量子电动力学环境中的量子Zeno动力学的激励下,我们研究了在消失普朗克常数\(\hbar\rightarrow0\)和大量子数\(N\rightarrow\infty\)的半经典极限下,与截断动量算子相对应的符号族的渐近性,其中\(\hpar\N\)保持不变。在合适的拓扑中,极限是不连续符号\(p\chi_D(x,p)\),其中\(\chi_D\)是相空间中经典允许区域D的特征函数。一个精细的分析表明,符号渐近接近函数\(p\chi_D^{(N)}(x,p)\),其中\(\chi_D^{(N)}\)是与积分Airy函数相关的\(\chi _D\)的光滑版本。我们还从动力学的角度讨论了极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信