Data Science Education: The Signal Processing Perspective [SP Education]

IF 9.4 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Sharon Gannot;Zheng-Hua Tan;Martin Haardt;Nancy F. Chen;Hoi-To Wai;Ivan Tashev;Walter Kellermann;Justin Dauwels
{"title":"Data Science Education: The Signal Processing Perspective [SP Education]","authors":"Sharon Gannot;Zheng-Hua Tan;Martin Haardt;Nancy F. Chen;Hoi-To Wai;Ivan Tashev;Walter Kellermann;Justin Dauwels","doi":"10.1109/MSP.2023.3294709","DOIUrl":null,"url":null,"abstract":"In the last decade, the signal processing (SP) community has witnessed a paradigm shift from model-based to data-driven methods. Machine learning (ML)—more specifically, deep learning—methodologies are nowadays widely used in all SP fields, e.g., audio, speech, image, video, multimedia, and multimodal/multisensor processing, to name a few. Many data-driven methods also incorporate domain knowledge to improve problem modeling, especially when computational burden, training data scarceness, and memory size are important constraints.","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"40 7","pages":"89-93"},"PeriodicalIF":9.4000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Magazine","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10313218/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the last decade, the signal processing (SP) community has witnessed a paradigm shift from model-based to data-driven methods. Machine learning (ML)—more specifically, deep learning—methodologies are nowadays widely used in all SP fields, e.g., audio, speech, image, video, multimedia, and multimodal/multisensor processing, to name a few. Many data-driven methods also incorporate domain knowledge to improve problem modeling, especially when computational burden, training data scarceness, and memory size are important constraints.
数据科学教育:信号处理视角[SP教育]
在过去的十年里,信号处理(SP)社区见证了从基于模型的方法到数据驱动方法的范式转变。机器学习(ML)——更具体地说,深度学习——方法目前广泛应用于所有SP领域,例如音频、语音、图像、视频、多媒体和多模式/多传感器处理等。许多数据驱动的方法还结合了领域知识来改进问题建模,特别是当计算负担、训练数据稀缺和内存大小是重要约束时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Magazine
IEEE Signal Processing Magazine 工程技术-工程:电子与电气
CiteScore
27.20
自引率
0.70%
发文量
123
审稿时长
6-12 weeks
期刊介绍: EEE Signal Processing Magazine is a publication that focuses on signal processing research and applications. It publishes tutorial-style articles, columns, and forums that cover a wide range of topics related to signal processing. The magazine aims to provide the research, educational, and professional communities with the latest technical developments, issues, and events in the field. It serves as the main communication platform for the society, addressing important matters that concern all members.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信