{"title":"An imporved nuclear extract preparation method","authors":"Kenn Zerivitz , Göran Akusjärvi","doi":"10.1016/0735-0651(89)90016-2","DOIUrl":null,"url":null,"abstract":"<div><p>A rapid, efficient, and highly reproducible procedure for nuclear extract preparation is described. The method uses lysolecithin (lysophosphatidylcholine) to disrupt plasma membranes and requires no detergents or douncing. Soluble extracts prepared by this method are comparable to conventional nuclear extracts in all assays tested. Lysolecithin nuclear extracts are competent for RNA polymerase II and III transcription, DNA replication, pre-mRNA splicing, and sequence specific DNA-protein binding. Nuclear extracts can be prepared on a small scale (10<sup>7</sup> cells) as well as for preparative purposes by this method.</p></div>","PeriodicalId":77714,"journal":{"name":"Gene analysis techniques","volume":"6 5","pages":"Pages 101-109"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0735-0651(89)90016-2","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene analysis techniques","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0735065189900162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
A rapid, efficient, and highly reproducible procedure for nuclear extract preparation is described. The method uses lysolecithin (lysophosphatidylcholine) to disrupt plasma membranes and requires no detergents or douncing. Soluble extracts prepared by this method are comparable to conventional nuclear extracts in all assays tested. Lysolecithin nuclear extracts are competent for RNA polymerase II and III transcription, DNA replication, pre-mRNA splicing, and sequence specific DNA-protein binding. Nuclear extracts can be prepared on a small scale (107 cells) as well as for preparative purposes by this method.