{"title":"Synthesis of fully bio-based branched unsaturated polyester oligomers and UV curing coatings","authors":"Caixing Feng, Haihong Ma, Fengmei Ren, Zhengfa Zhou, Weibing Xu","doi":"10.1007/s11998-023-00778-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, fully bio-based branched unsaturated polyester (BUPE) oligomers were synthesized by one-step solvent-free polycondensation using itaconic acid, isosorbide and glycerol as feedstocks. The branched structure was confirmed by Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance spectroscopy (<sup>1</sup>H NMR). The effect of the branched structure on the properties of BUPE UV curing coatings was investigated. The results showed that the introduction of a glycerol branched structure was favorable for UV curing. The BUPE UV curing coatings based on the glycerol branched structure showed higher gel content and crosslink density, which enhanced the hardness, solvent resistance and mechanical properties of the coatings. In addition, the BUPE UV curing coatings possessed extremely low surface roughness, excellent heat resistance and light transmission properties.</p></div>","PeriodicalId":48804,"journal":{"name":"Journal of Coatings Technology and Research","volume":"20 5","pages":"1747 - 1758"},"PeriodicalIF":2.3000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-023-00778-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, fully bio-based branched unsaturated polyester (BUPE) oligomers were synthesized by one-step solvent-free polycondensation using itaconic acid, isosorbide and glycerol as feedstocks. The branched structure was confirmed by Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance spectroscopy (1H NMR). The effect of the branched structure on the properties of BUPE UV curing coatings was investigated. The results showed that the introduction of a glycerol branched structure was favorable for UV curing. The BUPE UV curing coatings based on the glycerol branched structure showed higher gel content and crosslink density, which enhanced the hardness, solvent resistance and mechanical properties of the coatings. In addition, the BUPE UV curing coatings possessed extremely low surface roughness, excellent heat resistance and light transmission properties.
期刊介绍:
Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.