{"title":"Flame Dynamics Modelling Using Artificially Thickened Models","authors":"Omer Rathore, Salvador Navarro-Martinez","doi":"10.1007/s10494-023-00433-2","DOIUrl":null,"url":null,"abstract":"<div><p>Thickened flame models are prolific in the literature and offer an effective method of resolving flame dynamics on coarse LES meshes. The current state of the art relies heavily on the use of efficiency functions to compensate for impaired wrinkling of the thickened flame. However in practice these functions can involve parameters that are difficult to determine, perform poorly outside of certain ranges or require a posteriori analysis to evaluate performance. An alternative based on a generalised thickening is evaluated across a range of canonical configurations. The approach is demonstrated to perform well across a large range of thickening factors in capturing phenomena such as localised quenching and pinch off as well as generation of flame surface. Including good performance even in the case of large flame dynamics under acoustic forcing where the model has a clear advantage over DNS in achieving grid independence. Finally the approach is unified into an Large Eddy Simulation/Adaptive Mesh Refinement framework and applied to a turbulent Bunsen flame. The results show that even if the internal flame structure is poorly resolved on the original mesh, the global system behaviour is well predicted and compares favourably with other approaches.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"111 3","pages":"897 - 927"},"PeriodicalIF":2.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-023-00433-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-023-00433-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Thickened flame models are prolific in the literature and offer an effective method of resolving flame dynamics on coarse LES meshes. The current state of the art relies heavily on the use of efficiency functions to compensate for impaired wrinkling of the thickened flame. However in practice these functions can involve parameters that are difficult to determine, perform poorly outside of certain ranges or require a posteriori analysis to evaluate performance. An alternative based on a generalised thickening is evaluated across a range of canonical configurations. The approach is demonstrated to perform well across a large range of thickening factors in capturing phenomena such as localised quenching and pinch off as well as generation of flame surface. Including good performance even in the case of large flame dynamics under acoustic forcing where the model has a clear advantage over DNS in achieving grid independence. Finally the approach is unified into an Large Eddy Simulation/Adaptive Mesh Refinement framework and applied to a turbulent Bunsen flame. The results show that even if the internal flame structure is poorly resolved on the original mesh, the global system behaviour is well predicted and compares favourably with other approaches.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.