Extension of Stein’s lemma derived by using an integration by differentiation technique

Konstantinos Mamis
{"title":"Extension of Stein’s lemma derived by using an integration by differentiation technique","authors":"Konstantinos Mamis","doi":"10.1016/j.exco.2022.100077","DOIUrl":null,"url":null,"abstract":"<div><p>We extend Stein’s lemma for averages that explicitly contain the Gaussian random variable at a power. We present two proofs for this extension of Stein’s lemma, with the first being a rigorous proof by mathematical induction. The alternative, second proof is a constructive formal derivation in which we express the average not as an integral, but as the action of a pseudodifferential operator defined via the Gaussian moment-generating function. In extended Stein’s lemma, the absolute values of the coefficients of the probabilist’s Hermite polynomials appear, revealing yet another link between Hermite polynomials and normal distribution.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"2 ","pages":"Article 100077"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X22000143/pdfft?md5=a843ad26cd9ee26552cd2b455011ed66&pid=1-s2.0-S2666657X22000143-main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X22000143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We extend Stein’s lemma for averages that explicitly contain the Gaussian random variable at a power. We present two proofs for this extension of Stein’s lemma, with the first being a rigorous proof by mathematical induction. The alternative, second proof is a constructive formal derivation in which we express the average not as an integral, but as the action of a pseudodifferential operator defined via the Gaussian moment-generating function. In extended Stein’s lemma, the absolute values of the coefficients of the probabilist’s Hermite polynomials appear, revealing yet another link between Hermite polynomials and normal distribution.

用微分积分法推广了斯坦引理
我们将Stein引理推广到显式包含幂次高斯随机变量的平均值。我们对斯坦因引理的这种扩展提出了两个证明,第一个是通过数学归纳的严格证明。另一种,第二个证明是一种构造性的形式推导,其中我们将平均值表示为通过高斯矩生成函数定义的伪微分算子的作用,而不是积分。在扩展的Stein引理中,出现了概率学家的埃尔米特多项式的系数的绝对值,揭示了埃尔米特多项式和正态分布之间的另一个联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信