Comparison of an h- and hp-adaptive finite element solver for chemo-mechanically coupled battery electrode particles

G.F. Castelli , W. Dörfler
{"title":"Comparison of an h- and hp-adaptive finite element solver for chemo-mechanically coupled battery electrode particles","authors":"G.F. Castelli ,&nbsp;W. Dörfler","doi":"10.1016/j.exco.2022.100083","DOIUrl":null,"url":null,"abstract":"<div><p>Numerical investigations of mechanical stresses for phase transforming battery electrode materials on the particle scale are computationally highly demanding. The limitations are mainly induced by the strongly varying spatial and temporal scales of the underlying phase field model, which require an ultra fine mesh and time resolution, however, solely at specific stages in space and time. To overcome these numerical difficulties we present a general-purpose space and time adaptive solution algorithm based on an <span><math><mrow><mi>h</mi><mi>p</mi></mrow></math></span>-adaptive finite element method and a variable-step, variable-order time integrator. At the example of a chemo-mechanical electrode particle model we demonstrate the computational savings gained by the <span><math><mrow><mi>h</mi><mi>p</mi></mrow></math></span>-adaptivity. In particular, we compare the results to an <span><math><mi>h</mi></math></span>-adaptive finite element method and show the reduction of computational complexity.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"2 ","pages":"Article 100083"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X22000180/pdfft?md5=f2aac5512f11a1d40fd0524102678a11&pid=1-s2.0-S2666657X22000180-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X22000180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical investigations of mechanical stresses for phase transforming battery electrode materials on the particle scale are computationally highly demanding. The limitations are mainly induced by the strongly varying spatial and temporal scales of the underlying phase field model, which require an ultra fine mesh and time resolution, however, solely at specific stages in space and time. To overcome these numerical difficulties we present a general-purpose space and time adaptive solution algorithm based on an hp-adaptive finite element method and a variable-step, variable-order time integrator. At the example of a chemo-mechanical electrode particle model we demonstrate the computational savings gained by the hp-adaptivity. In particular, we compare the results to an h-adaptive finite element method and show the reduction of computational complexity.

化学-机械耦合电池电极粒子的h-和hp-自适应有限元求解器的比较
在颗粒尺度上对相变电池电极材料的机械应力进行数值研究在计算上要求很高。这些限制主要是由基础相场模型的强烈变化的空间和时间尺度引起的,这需要超精细的网格和时间分辨率,然而,仅在空间和时间的特定阶段。为了克服这些数值困难,我们提出了一种基于hp自适应有限元方法和变步长、变阶时间积分器的通用时空自适应求解算法。在化学-机械电极粒子模型的例子中,我们展示了hp自适应所获得的计算节省。特别地,我们将结果与h自适应有限元方法进行了比较,并显示了计算复杂性的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信