Solutions of equations x2−(p2q2±3p)y2=±kt

Roji Bala, Vinod Mishra
{"title":"Solutions of equations x2−(p2q2±3p)y2=±kt","authors":"Roji Bala,&nbsp;Vinod Mishra","doi":"10.1016/j.exco.2021.100043","DOIUrl":null,"url":null,"abstract":"<div><p>In the present paper, we have solved the equation <span><math><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mrow><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>±</mo><mn>3</mn><mi>p</mi><mo>)</mo></mrow><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>t</mi></mrow></msup><mo>,</mo><mspace></mspace><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mrow><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>±</mo><mn>5</mn><mi>p</mi><mo>)</mo></mrow><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>t</mi></mrow></msup></mrow></math></span> and expressed its positive integer solutions in terms of generalized Fibonacci, generalized Lucas and generalized Pell, generalized Pell–Lucas sequences. With the help of this equation, we have found units of <span><math><mrow><mi>Z</mi><mrow><mo>[</mo><msqrt><mrow><mn>885</mn></mrow></msqrt><mo>]</mo></mrow></mrow></math></span> and <span><math><mrow><mi>Z</mi><mrow><mo>[</mo><msqrt><mrow><mn>915</mn></mrow></msqrt><mo>]</mo></mrow></mrow></math></span> in terms of generalized Fibonacci, generalized Lucas, generalized Pell and generalized Pell–Lucas numbers.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"2 ","pages":"Article 100043"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X21000239/pdfft?md5=ca9fffbadacbdefbd419ff95b70172cd&pid=1-s2.0-S2666657X21000239-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X21000239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, we have solved the equation x2(p2q2±3p)y2=kt,x2(p2q2±5p)y2=kt and expressed its positive integer solutions in terms of generalized Fibonacci, generalized Lucas and generalized Pell, generalized Pell–Lucas sequences. With the help of this equation, we have found units of Z[885] and Z[915] in terms of generalized Fibonacci, generalized Lucas, generalized Pell and generalized Pell–Lucas numbers.

方程x2−(p2q2±3p)y2=±kt的解
在本文中,我们求解了方程x2−(p2q2±3p)y2=kt,x2−(p2q2±5p)y2=kt,并用广义Fibonacci,广义Lucas和广义Pell,广义Pell–Lucas序列表示了它的正整数解。借助于该方程,我们已经根据广义Fibonacci、广义Lucas、广义Pell和广义Pell–Lucas数找到了Z[885]和Z[915]的单位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信