Investigating factors influencing pedestrian crosswalk usage behavior in Dhaka city using supervised machine learning techniques

Nazmus Sakib , Tonmoy Paul , Md. Tawkir Ahmed , Khondhaker Al Momin , Saurav Barua
{"title":"Investigating factors influencing pedestrian crosswalk usage behavior in Dhaka city using supervised machine learning techniques","authors":"Nazmus Sakib ,&nbsp;Tonmoy Paul ,&nbsp;Md. Tawkir Ahmed ,&nbsp;Khondhaker Al Momin ,&nbsp;Saurav Barua","doi":"10.1016/j.multra.2023.100108","DOIUrl":null,"url":null,"abstract":"<div><p>Pedestrians are the most vulnerable road users and are over-represented in casualty statistics, particularly in low- and middle-income countries like Bangladesh. To ensure the safety of pedestrians, it is necessary to identify the factors underlying pedestrian behavior while crossing. Hence, this study aims to predict the pedestrian decision regarding crosswalks using supervised machine learning techniques namely, Classification and Regression Tree (CART), Random Forest (RF), and Extreme Gradient Boost (XGBoost). A questionnaire survey was conducted in twelve important locations of Dhaka, Bangladesh using 8 attributes related to crosswalk behavior. Analysis suggests RF model is the most effective in terms of prediction performances, specifically having a 96.00% F1 score and 95.83% MCC value. It has been found that unsuitability of crosswalk location, absence of guard rails on median, and inadequate lightning at night near crosswalks are the most important features for preferring to use crosswalks. The findings of the study will help policymakers and transport planners to plan accordingly in order to develop safe crosswalks.</p></div>","PeriodicalId":100933,"journal":{"name":"Multimodal Transportation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772586323000400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pedestrians are the most vulnerable road users and are over-represented in casualty statistics, particularly in low- and middle-income countries like Bangladesh. To ensure the safety of pedestrians, it is necessary to identify the factors underlying pedestrian behavior while crossing. Hence, this study aims to predict the pedestrian decision regarding crosswalks using supervised machine learning techniques namely, Classification and Regression Tree (CART), Random Forest (RF), and Extreme Gradient Boost (XGBoost). A questionnaire survey was conducted in twelve important locations of Dhaka, Bangladesh using 8 attributes related to crosswalk behavior. Analysis suggests RF model is the most effective in terms of prediction performances, specifically having a 96.00% F1 score and 95.83% MCC value. It has been found that unsuitability of crosswalk location, absence of guard rails on median, and inadequate lightning at night near crosswalks are the most important features for preferring to use crosswalks. The findings of the study will help policymakers and transport planners to plan accordingly in order to develop safe crosswalks.

利用监督式机器学习技术调查达卡市人行横道使用行为的影响因素
行人是最脆弱的道路使用者,在伤亡统计中的比例过高,尤其是在孟加拉国等中低收入国家。为了确保行人的安全,有必要确定行人过街行为的潜在因素。因此,本研究旨在使用有监督的机器学习技术,即分类和回归树(CART)、随机森林(RF)和极限梯度提升(XGBoost),预测行人在人行横道上的决策。在孟加拉国达卡的12个重要地点进行了一项问卷调查,使用了与人行横道行为相关的8个属性。分析表明,RF模型在预测性能方面是最有效的,特别是F1得分为96.00%,MCC值为95.83%。研究发现,人行横道位置不合适、中央分隔带上没有护栏以及夜间人行横街附近的雷电不足是偏好使用人行横路的最重要特征。这项研究的结果将有助于决策者和交通规划者制定相应的计划,以开发安全的人行横道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信