{"title":"Constraints and interactions in quantization of Yukawa model with higher-order derivatives","authors":"Jan Żochowski","doi":"10.1016/S0034-4877(23)00067-8","DOIUrl":null,"url":null,"abstract":"<div><p>This work is dedicated to quantization of the light-front Yukawa model in <em>D</em> = 1 + 3 dimensions with higher-order derivatives of a scalar field. The problem of computing Dirac brackets and the (anti-)commutator algebra of interacting fields in the presence of constraints is discussed. The Dirac method and the Ostrogradski formalism of the higher-order derivatives are exploited. The systematic method of obtaining the inverse of the functional Dirac–Bergmann matrix with interactions and higher-order derivatives is introduced in two variants. The discussion of applications and details of these two variants are conducted. The results of quantization in the form of the (anti-)commutator algebra are presented and analyzed. There is a particular emphasis on the structure of interactions for the light-front Yukawa model with higher-order derivatives.</p></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487723000678","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work is dedicated to quantization of the light-front Yukawa model in D = 1 + 3 dimensions with higher-order derivatives of a scalar field. The problem of computing Dirac brackets and the (anti-)commutator algebra of interacting fields in the presence of constraints is discussed. The Dirac method and the Ostrogradski formalism of the higher-order derivatives are exploited. The systematic method of obtaining the inverse of the functional Dirac–Bergmann matrix with interactions and higher-order derivatives is introduced in two variants. The discussion of applications and details of these two variants are conducted. The results of quantization in the form of the (anti-)commutator algebra are presented and analyzed. There is a particular emphasis on the structure of interactions for the light-front Yukawa model with higher-order derivatives.
期刊介绍:
Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.