Yuying Sun , Xinyu Zhang , Alan T.K. Wan , Shouyang Wang
{"title":"Model averaging for interval-valued data","authors":"Yuying Sun , Xinyu Zhang , Alan T.K. Wan , Shouyang Wang","doi":"10.1016/j.ejor.2021.11.015","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, model averaging, by which estimates are obtained based on not one single model but a weighted ensemble of models, has received growing attention as an alternative to model selection. To-date, methods for model averaging have been developed almost exclusively for <em>point-valued</em> data, despite the fact that <em>interval-valued</em> data are commonplace in many applications and the substantial body of literature on estimation and inference methods for interval-valued data. This paper focuses on the special case of interval time series data, and assumes that the mid-point and log-range of the interval values are modelled by a two-equation vector autoregressive with exogenous covariates (VARX) model. We develop a methodology for combining models of varying lag orders based on a weight choice criterion that minimises an unbiased estimator of the squared error risk of the model average estimator. We prove that this method yields predictors of mid-points and ranges with an optimal asymptotic property. In addition, we develop a method for correcting the range forecasts, taking into account the forecast error variance. An extensive simulation experiment examines the performance of the proposed model averaging method in finite samples. We apply the method to an interval-valued data series on crude oil future prices.</p></div>","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"301 2","pages":"Pages 772-784"},"PeriodicalIF":6.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377221721009619","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 8
Abstract
In recent years, model averaging, by which estimates are obtained based on not one single model but a weighted ensemble of models, has received growing attention as an alternative to model selection. To-date, methods for model averaging have been developed almost exclusively for point-valued data, despite the fact that interval-valued data are commonplace in many applications and the substantial body of literature on estimation and inference methods for interval-valued data. This paper focuses on the special case of interval time series data, and assumes that the mid-point and log-range of the interval values are modelled by a two-equation vector autoregressive with exogenous covariates (VARX) model. We develop a methodology for combining models of varying lag orders based on a weight choice criterion that minimises an unbiased estimator of the squared error risk of the model average estimator. We prove that this method yields predictors of mid-points and ranges with an optimal asymptotic property. In addition, we develop a method for correcting the range forecasts, taking into account the forecast error variance. An extensive simulation experiment examines the performance of the proposed model averaging method in finite samples. We apply the method to an interval-valued data series on crude oil future prices.
期刊介绍:
The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.