Tong Zhang, Xiaohua Ju, Lvye Liu, Lin Liu, Teng He, Yunhua Xu, Hanying Wang and Ping Chen
{"title":"Steering ammonia decomposition over Ru nanoparticles on ZrO2 by enhancing metal–support interaction†","authors":"Tong Zhang, Xiaohua Ju, Lvye Liu, Lin Liu, Teng He, Yunhua Xu, Hanying Wang and Ping Chen","doi":"10.1039/D3CY00691C","DOIUrl":null,"url":null,"abstract":"<p >ZrO<small><sub>2</sub></small>, one of the typical oxides, holds promise as a support for supported metal-based catalysts. Herein, Ru nanoparticles (NPs) on ZrO<small><sub>2</sub></small> (Ru/ZrO<small><sub>2</sub></small>) analogues were prepared from milling and precipitation methods and applied in ammonia decomposition reaction. It was found that the Ru NPs in different Ru/ZrO<small><sub>2</sub></small> samples possessed similar particle sizes. Under identical reaction conditions, the Ru/ZrO<small><sub>2</sub></small> obtained from precipitation methods exhibits much higher activity than the Ru/ZrO<small><sub>2</sub></small> analogue with nearly identical Ru NPs on ZrO<small><sub>2</sub></small> obtained from the milling method. A hydrogen formation rate of 1439 mmol g<small><sub>cat</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small> and excellent stability were achieved over Ru/ZrO<small><sub>2</sub></small> catalyst from the precipitation method at 450 °C with a space velocity of 30 000 mL g<small><sub>cat</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small>, comparable with many efficient Ru-based catalysts reported previously. The characterization results reveal that the superior catalytic performance of Ru/ZrO<small><sub>2</sub></small> from the precipitation method was mainly attributed to the modulated electronic structure of Ru NPs, which stems from the intimate interaction between Ru NPs and the ZrO<small><sub>2</sub></small> support. As a result, Ru/ZrO<small><sub>2</sub></small> from the precipitation method can facilitate the activation and dissociation of NH<small><sub>3</sub></small> molecules and exhibit greatly enhanced activity and intrinsic activity for NH<small><sub>3</sub></small> decomposition. This work offers opportunity for improving the catalyst performance by regulating the metal–support interaction of Ru-based NH<small><sub>3</sub></small> decomposition catalysts.</p>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":" 18","pages":" 5205-5213"},"PeriodicalIF":4.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/cy/d3cy00691c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
ZrO2, one of the typical oxides, holds promise as a support for supported metal-based catalysts. Herein, Ru nanoparticles (NPs) on ZrO2 (Ru/ZrO2) analogues were prepared from milling and precipitation methods and applied in ammonia decomposition reaction. It was found that the Ru NPs in different Ru/ZrO2 samples possessed similar particle sizes. Under identical reaction conditions, the Ru/ZrO2 obtained from precipitation methods exhibits much higher activity than the Ru/ZrO2 analogue with nearly identical Ru NPs on ZrO2 obtained from the milling method. A hydrogen formation rate of 1439 mmol gcat−1 h−1 and excellent stability were achieved over Ru/ZrO2 catalyst from the precipitation method at 450 °C with a space velocity of 30 000 mL gcat−1 h−1, comparable with many efficient Ru-based catalysts reported previously. The characterization results reveal that the superior catalytic performance of Ru/ZrO2 from the precipitation method was mainly attributed to the modulated electronic structure of Ru NPs, which stems from the intimate interaction between Ru NPs and the ZrO2 support. As a result, Ru/ZrO2 from the precipitation method can facilitate the activation and dissociation of NH3 molecules and exhibit greatly enhanced activity and intrinsic activity for NH3 decomposition. This work offers opportunity for improving the catalyst performance by regulating the metal–support interaction of Ru-based NH3 decomposition catalysts.
期刊介绍:
A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis.
Editor-in-chief: Bert Weckhuysen
Impact factor: 5.0
Time to first decision (peer reviewed only): 31 days