{"title":"Organismal Responses to Coastal Acidification Informed by Interrelating Erosion, Roundness and Growth of Gastropod Shells.","authors":"David J Marshall, Amira Rashid","doi":"10.6620/ZS.2023.62-41","DOIUrl":null,"url":null,"abstract":"<p><p>urrent understanding of how calcifying organisms respond to externally forced oceanic and coastal acidification (OCA) is largely based on short-term, controlled laboratory or mesocosm experiments. Studies on organismal responses to acidification (reduced carbonate saturation and pH) in the wild, where animals simultaneously interact with a range of biotic and abiotic circumstances, are limited in scope and interpretation. The present study aimed to better understand how gastropod shell attributes and their interrelations can inform about responses to coastal acidification. We investigated shell chemical erosion, shell roundness, and growth rate of <i>Planaxis sulcatus</i> snails, which are locally exposed to acidified and non-acidified rocky intertidal water. We tested a new approach to quantifying shell erosion based on the spiral suture length (EI, erosion index) and found that shell erosion mirrored field acidification conditions. Exposure to acidification caused shells to become rounder (width/length). Field growth rate, determined from apertural margin extension of marked and later recaptured snails, was strongly negatively related to both shell erosion and shell roundness. Since different shell attributes are indicative of different relationships-shell erosion is an extrinsic passive marker of acidification, and shell roundness and growth rate are intrinsic performance responders-analyzing their interrelations can imply causation, enhance predictive power, and bolster interpretation confidence. This study contributes to the methodology and interpretation of findings of trait-based field investigations to understand organismal responses to coastal acidification.</p>","PeriodicalId":49331,"journal":{"name":"Zoological Studies","volume":"62 ","pages":"e41"},"PeriodicalIF":1.5000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628549/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Studies","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.6620/ZS.2023.62-41","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
urrent understanding of how calcifying organisms respond to externally forced oceanic and coastal acidification (OCA) is largely based on short-term, controlled laboratory or mesocosm experiments. Studies on organismal responses to acidification (reduced carbonate saturation and pH) in the wild, where animals simultaneously interact with a range of biotic and abiotic circumstances, are limited in scope and interpretation. The present study aimed to better understand how gastropod shell attributes and their interrelations can inform about responses to coastal acidification. We investigated shell chemical erosion, shell roundness, and growth rate of Planaxis sulcatus snails, which are locally exposed to acidified and non-acidified rocky intertidal water. We tested a new approach to quantifying shell erosion based on the spiral suture length (EI, erosion index) and found that shell erosion mirrored field acidification conditions. Exposure to acidification caused shells to become rounder (width/length). Field growth rate, determined from apertural margin extension of marked and later recaptured snails, was strongly negatively related to both shell erosion and shell roundness. Since different shell attributes are indicative of different relationships-shell erosion is an extrinsic passive marker of acidification, and shell roundness and growth rate are intrinsic performance responders-analyzing their interrelations can imply causation, enhance predictive power, and bolster interpretation confidence. This study contributes to the methodology and interpretation of findings of trait-based field investigations to understand organismal responses to coastal acidification.
期刊介绍:
Zoological Studies publishes original research papers in five major fields: Animal Behavior, Comparative Physiology, Evolution, Ecology, and Systematics and Biogeography. Manuscripts are welcome from around the world and must be written in English. When the manuscript concerns the use of animals or specimens in research, a statement must be included to the effect that the author(s) has adhered to the legal requirements of the country in which the work was carried out or to any institutional guidelines.