Alberto García-Hernandez, Teresa Pérez, María Del Carmen Pardo, Dimitris Rizopoulos
{"title":"An illness-death multistate model to implement delta adjustment and reference-based imputation with time-to-event endpoints.","authors":"Alberto García-Hernandez, Teresa Pérez, María Del Carmen Pardo, Dimitris Rizopoulos","doi":"10.1002/pst.2348","DOIUrl":null,"url":null,"abstract":"<p><p>With a treatment policy strategy, therapies are evaluated regardless of the disturbance caused by intercurrent events (ICEs). Implementing this estimand is challenging if subjects are not followed up after the ICE. This circumstance can be dealt with using delta adjustment (DA) or reference-based (RB) imputation. In the survival field, DA and RB imputation have been researched so far using multiple imputation (MI). Here, we present a fully analytical solution. We use the illness-death multistate model with the following transitions: (a) from the initial state to the event of interest, (b) from the initial state to the ICE, and (c) from the ICE to the event. We estimate the intensity function of transitions (a) and (b) using flexible parametric survival models. Transition (c) is assumed unobserved but identifiable using DA or RB imputation assumptions. Various rules have been considered: no ICE effect, DA under proportional hazards (PH) or additive hazards (AH), jump to reference (J2R), and (either PH or AH) copy increment from reference. We obtain the marginal survival curve of interest by calculating, via numerical integration, the probability of transitioning from the initial state to the event of interest regardless of having passed or not by the ICE state. We use the delta method to obtain standard errors (SEs). Finally, we quantify the performance of the proposed estimator through simulations and compare it against MI. Our analytical solution is more efficient than MI and avoids SE misestimation-a known phenomenon associated with Rubin's variance equation.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2348","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
With a treatment policy strategy, therapies are evaluated regardless of the disturbance caused by intercurrent events (ICEs). Implementing this estimand is challenging if subjects are not followed up after the ICE. This circumstance can be dealt with using delta adjustment (DA) or reference-based (RB) imputation. In the survival field, DA and RB imputation have been researched so far using multiple imputation (MI). Here, we present a fully analytical solution. We use the illness-death multistate model with the following transitions: (a) from the initial state to the event of interest, (b) from the initial state to the ICE, and (c) from the ICE to the event. We estimate the intensity function of transitions (a) and (b) using flexible parametric survival models. Transition (c) is assumed unobserved but identifiable using DA or RB imputation assumptions. Various rules have been considered: no ICE effect, DA under proportional hazards (PH) or additive hazards (AH), jump to reference (J2R), and (either PH or AH) copy increment from reference. We obtain the marginal survival curve of interest by calculating, via numerical integration, the probability of transitioning from the initial state to the event of interest regardless of having passed or not by the ICE state. We use the delta method to obtain standard errors (SEs). Finally, we quantify the performance of the proposed estimator through simulations and compare it against MI. Our analytical solution is more efficient than MI and avoids SE misestimation-a known phenomenon associated with Rubin's variance equation.
期刊介绍:
Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics.
The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.