{"title":"A Differential Transcriptional Regulome Approach to Unpack Cancer Biology: Insights on Renal Cell Carcinoma Subtypes.","authors":"Aysegul Caliskan, Kazim Yalcin Arga","doi":"10.1089/omi.2023.0167","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer research calls for new approaches that account for the regulatory complexities of biology. We present, in this study, the differential transcriptional regulome (DIFFREG) approach for the identification and prioritization of key transcriptional regulators and apply it to the case of renal cell carcinoma (RCC) biology. Of note, RCC has a poor prognosis and the biomarker and drug discovery studies to date have tended to focus on gene expression independent from mutations and/or post-translational modifications. DIFFREG focuses on the differential regulation between transcription factors (TFs) and their target genes rather than differential gene expression and integrates transcriptome profiling with the human transcriptional regulatory network to analyze differential gene regulation between healthy and RCC cases. In this study, RNA-seq tissue samples (<i>n</i> = 1020) from the Cancer Genome Atlas (TCGA), including healthy and tumor subjects, were integrated with a comprehensive human TF-gene interactome dataset (1122603 interactions between 1289 TFs and 25177 genes). Comparative analysis of DIFFREG profiles, consisting of perturbed TF-gene interactions, from three common subtypes (clear cell RCC, papillary RCC and chromophobe RCC) revealed subtype-specific alterations, supporting the hypothesis that these signatures in the transcriptional regulome profiles may be considered potential biomarkers that may play an important role in elucidating the molecular mechanisms of RCC development and translating knowledge about the genetic basis of RCC into the clinic. In addition, these indicators may help oncologists make the best decisions for diagnosis and prognosis management.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/omi.2023.0167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer research calls for new approaches that account for the regulatory complexities of biology. We present, in this study, the differential transcriptional regulome (DIFFREG) approach for the identification and prioritization of key transcriptional regulators and apply it to the case of renal cell carcinoma (RCC) biology. Of note, RCC has a poor prognosis and the biomarker and drug discovery studies to date have tended to focus on gene expression independent from mutations and/or post-translational modifications. DIFFREG focuses on the differential regulation between transcription factors (TFs) and their target genes rather than differential gene expression and integrates transcriptome profiling with the human transcriptional regulatory network to analyze differential gene regulation between healthy and RCC cases. In this study, RNA-seq tissue samples (n = 1020) from the Cancer Genome Atlas (TCGA), including healthy and tumor subjects, were integrated with a comprehensive human TF-gene interactome dataset (1122603 interactions between 1289 TFs and 25177 genes). Comparative analysis of DIFFREG profiles, consisting of perturbed TF-gene interactions, from three common subtypes (clear cell RCC, papillary RCC and chromophobe RCC) revealed subtype-specific alterations, supporting the hypothesis that these signatures in the transcriptional regulome profiles may be considered potential biomarkers that may play an important role in elucidating the molecular mechanisms of RCC development and translating knowledge about the genetic basis of RCC into the clinic. In addition, these indicators may help oncologists make the best decisions for diagnosis and prognosis management.