XinYi Chen , XiaoXiao Zheng , Ting Shen , Ting He , YangQi Zhao , Yi Dong
{"title":"In vitro validation: GLY alleviates UV-induced corneal epithelial damage through the HMGB1-TLR/MyD88-NF-κB signaling pathway","authors":"XinYi Chen , XiaoXiao Zheng , Ting Shen , Ting He , YangQi Zhao , Yi Dong","doi":"10.1016/j.acthis.2023.152111","DOIUrl":null,"url":null,"abstract":"<div><p>UV-induced corneal damage is a common ocular surface injury that usually leads to corneal lesions causing persistent inflammation. High mobility group box 1 (HMGB1) is identified as an inflammatory alarm in various tissue injuries. Here, this study first evaluates the repair effect of the HMGB1-selective inhibitor GLY in UV-induced corneal damage; Secondly, the inhibitory effect of GLY on UV-induced corneal damage induced inflammation and the potential therapeutic mechanism of GLY were studied. GLY effectively attenuates the expression of UV-induced inflammatory factors and HMGB1, TLR/MyD88, NF-κB signaling pathway genes at the mRNA and protein levels. In addition, RT-PCR and Western Blot experiments after knocking down HMGB1 and TLR2/9 genes showed that GLY alleviated corneal inflammation by inhibiting the HMGB1-TLR/MyD88 signaling pathway. The results of this study show that targeting HMGB1-NF-κB by GLY can alleviate the inflammatory response induced by UV induction.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0065128123001186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
UV-induced corneal damage is a common ocular surface injury that usually leads to corneal lesions causing persistent inflammation. High mobility group box 1 (HMGB1) is identified as an inflammatory alarm in various tissue injuries. Here, this study first evaluates the repair effect of the HMGB1-selective inhibitor GLY in UV-induced corneal damage; Secondly, the inhibitory effect of GLY on UV-induced corneal damage induced inflammation and the potential therapeutic mechanism of GLY were studied. GLY effectively attenuates the expression of UV-induced inflammatory factors and HMGB1, TLR/MyD88, NF-κB signaling pathway genes at the mRNA and protein levels. In addition, RT-PCR and Western Blot experiments after knocking down HMGB1 and TLR2/9 genes showed that GLY alleviated corneal inflammation by inhibiting the HMGB1-TLR/MyD88 signaling pathway. The results of this study show that targeting HMGB1-NF-κB by GLY can alleviate the inflammatory response induced by UV induction.