Enumeration of hypermaps and Hirota equations for extended rationally constrained KP

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
G. Carlet, J. van de Leur, H. Posthuma, S. Shadrin
{"title":"Enumeration of hypermaps and Hirota equations for extended rationally constrained KP","authors":"G. Carlet, J. van de Leur, H. Posthuma, S. Shadrin","doi":"10.4310/cntp.2023.v17.n3.a3","DOIUrl":null,"url":null,"abstract":"We consider the Hurwitz Dubrovin–Frobenius manifold structure on the space of meromorphic functions on the Riemann sphere with exactly two poles, one simple and one of arbitrary order. We prove that the all genera partition function (also known as the total descendant potential) associated with this Dubrovin–Frobenius manifold is a tau function of a rational reduction of the Kadomtsev–Petviashvili hierarchy. This statement was conjectured by Liu, Zhang, and Zhou. We also provide a partial enumerative meaning for this partition function associating one particular set of times with enumeration of rooted hypermaps.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2023.v17.n3.a3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

We consider the Hurwitz Dubrovin–Frobenius manifold structure on the space of meromorphic functions on the Riemann sphere with exactly two poles, one simple and one of arbitrary order. We prove that the all genera partition function (also known as the total descendant potential) associated with this Dubrovin–Frobenius manifold is a tau function of a rational reduction of the Kadomtsev–Petviashvili hierarchy. This statement was conjectured by Liu, Zhang, and Zhou. We also provide a partial enumerative meaning for this partition function associating one particular set of times with enumeration of rooted hypermaps.
扩展合理约束KP的超映射和Hirota方程的计数
我们考虑Riemann球面上亚纯函数空间上的Hurwitz-Dubrovin–Frobenius流形结构,该空间恰好具有两个极点,一个极点是简单的,一个是任意阶的。我们证明了与该Dubrovin–Frobenius流形相关的所有属配分函数(也称为全后代势)是Kadomtsev–Petviashvili层次的有理约简的tau函数。这个说法是刘、张和周推测出来的。我们还为这个将一组特定的时间与根超映射的枚举相关联的分区函数提供了部分枚举意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信