Resurgence, Stokes constants, and arithmetic functions in topological string theory

IF 1.2 3区 数学 Q1 MATHEMATICS
Claudia Rella
{"title":"Resurgence, Stokes constants, and arithmetic functions in topological string theory","authors":"Claudia Rella","doi":"10.4310/cntp.2023.v17.n3.a4","DOIUrl":null,"url":null,"abstract":"The quantization of the mirror curve to a toric Calabi–Yau threefold gives rise to quantum-mechanical operators, whose fermionic spectral traces produce factorially divergent power series in the Planck constant. These asymptotic expansions can be promoted to resurgent trans-series. They show infinite towers of periodic singularities in their Borel plane and infinitely many rational Stokes constants, which are encoded in generating functions expressed in closed form in terms of $q$-series. We provide an exact solution to the resurgent structure of the first fermionic spectral trace of the local $\\mathbb{P}^2$ geometry in the semiclassical limit of the spectral theory, corresponding to the strongly-coupled regime of topological string theory on the same background in the conjectural TS/ST correspondence. Our approach straightforwardly applies to the dual weakly-coupled limit of the topological string. We present and prove closed formulae for the Stokes constants as explicit arithmetic functions and for the perturbative coefficients as special values of known $L$-functions, while the duality between the two scaling regimes of strong and weak string coupling constant appears in number-theoretic form. A preliminary numerical investigation of the local $\\mathbb{F}_0$ geometry unveils a more complicated resurgent structure with logarithmic sub-leading asymptotics. Finally, we obtain a new analytic prediction on the asymptotic behavior of the fermionic spectral traces in an appropriate WKB double-scaling regime, which is captured by the refined topological string in the Nekrasov–Shatashvili limit.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":"56 11","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2023.v17.n3.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

The quantization of the mirror curve to a toric Calabi–Yau threefold gives rise to quantum-mechanical operators, whose fermionic spectral traces produce factorially divergent power series in the Planck constant. These asymptotic expansions can be promoted to resurgent trans-series. They show infinite towers of periodic singularities in their Borel plane and infinitely many rational Stokes constants, which are encoded in generating functions expressed in closed form in terms of $q$-series. We provide an exact solution to the resurgent structure of the first fermionic spectral trace of the local $\mathbb{P}^2$ geometry in the semiclassical limit of the spectral theory, corresponding to the strongly-coupled regime of topological string theory on the same background in the conjectural TS/ST correspondence. Our approach straightforwardly applies to the dual weakly-coupled limit of the topological string. We present and prove closed formulae for the Stokes constants as explicit arithmetic functions and for the perturbative coefficients as special values of known $L$-functions, while the duality between the two scaling regimes of strong and weak string coupling constant appears in number-theoretic form. A preliminary numerical investigation of the local $\mathbb{F}_0$ geometry unveils a more complicated resurgent structure with logarithmic sub-leading asymptotics. Finally, we obtain a new analytic prediction on the asymptotic behavior of the fermionic spectral traces in an appropriate WKB double-scaling regime, which is captured by the refined topological string in the Nekrasov–Shatashvili limit.
拓扑弦理论中的复活、Stokes常数和算术函数
将镜像曲线量化为复曲面Calabi–Yau的三倍产生了量子力学算符,其费米子光谱轨迹在普朗克常数中产生因子发散的幂级数。这些渐近展开式可以推广为复活反级数。它们在其Borel平面上显示了无限多个周期奇点塔和无限多个有理Stokes常数,这些常数被编码在以$q$-级数的闭合形式表示的生成函数中。我们提供了局部$\mathbb{P}^2$几何的第一费米子谱迹在谱理论的半经典极限中的复活结构的精确解,对应于拓扑弦理论在相同背景下的强耦合状态,在推测的TS/ST对应关系中。我们的方法直接适用于拓扑串的对偶弱耦合极限。我们给出并证明了Stokes常数作为显式算术函数和微扰系数作为已知$L$-函数的特殊值的闭合公式,而强和弱串耦合常数的两个标度域之间的对偶性以数论形式出现{F}_0$geometry揭示了一个更复杂的具有对数亚导渐近性的复活结构。最后,我们获得了一个关于适当WKB双标度域中费米子谱迹渐近行为的新的分析预测,该预测由Nekrasov–Shatashvili极限中的精细拓扑串捕获。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信