{"title":"Gaussian Beam Ansatz for Finite Difference Wave Equations","authors":"Umberto Biccari, Enrique Zuazua","doi":"10.1007/s10208-023-09632-9","DOIUrl":null,"url":null,"abstract":"<p>This work is concerned with the construction of Gaussian Beam (GB) solutions for the numerical approximation of wave equations, semi-discretized in space by finite difference schemes. GB are high-frequency solutions whose propagation can be described, both at the continuous and at the semi-discrete levels, by microlocal tools along the bi-characteristics of the corresponding Hamiltonian. Their dynamics differ in the continuous and the semi-discrete setting, because of the high-frequency gap between the Hamiltonians. In particular, numerical high-frequency solutions can exhibit spurious pathological behaviors, such as lack of propagation in space, contrary to the classical space-time propagation properties of continuous waves. This gap between the behavior of continuous and numerical waves introduces also significant analytical difficulties, since classical GB constructions cannot be immediately extrapolated to the finite difference setting, and need to be properly tailored to accurately detect the propagation properties in discrete media. Our main objective in this paper is to present a general and rigorous construction of the GB ansatz for finite difference wave equations, and corroborate this construction through accurate numerical simulations.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"42 24","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-023-09632-9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This work is concerned with the construction of Gaussian Beam (GB) solutions for the numerical approximation of wave equations, semi-discretized in space by finite difference schemes. GB are high-frequency solutions whose propagation can be described, both at the continuous and at the semi-discrete levels, by microlocal tools along the bi-characteristics of the corresponding Hamiltonian. Their dynamics differ in the continuous and the semi-discrete setting, because of the high-frequency gap between the Hamiltonians. In particular, numerical high-frequency solutions can exhibit spurious pathological behaviors, such as lack of propagation in space, contrary to the classical space-time propagation properties of continuous waves. This gap between the behavior of continuous and numerical waves introduces also significant analytical difficulties, since classical GB constructions cannot be immediately extrapolated to the finite difference setting, and need to be properly tailored to accurately detect the propagation properties in discrete media. Our main objective in this paper is to present a general and rigorous construction of the GB ansatz for finite difference wave equations, and corroborate this construction through accurate numerical simulations.
期刊介绍:
Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer.
With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles.
The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.