Weyl invariant $E_8$ Jacobi forms and $E$-strings

IF 1.2 3区 数学 Q1 MATHEMATICS
Kaiwen Sun, Haowu Wang
{"title":"Weyl invariant $E_8$ Jacobi forms and $E$-strings","authors":"Kaiwen Sun, Haowu Wang","doi":"10.4310/cntp.2023.v17.n3.a1","DOIUrl":null,"url":null,"abstract":"In 1992 Wirthmüller showed that for any irreducible root system not of type $E_8$ the ring of weak Jacobi forms invariant under Weyl group is a polynomial algebra. However, it has recently been proved that for $E_8$ the ring is not a polynomial algebra. Weyl invariant $E_8$ Jacobi forms have many applications in string theory and it is an open problem to describe such forms. The scaled refined free energies of $E$-strings with certain $\\eta$-function factors are conjectured to be Weyl invariant $E_8$ quasi-holomorphic Jacobi forms. It is further observed that the scaled refined free energies up to some powers of $E_4$ can be written as polynomials in nine Sakai’s $E_8$ Jacobi forms and Eisenstein series $E_2, E_4, E_6$. Motivated by the physical conjectures, we prove that for any Weyl invariant $E_8$ Jacobi form $\\phi_t$ of index $t$ the function $E^{[t/5]}_4 \\Delta^{[5t/6]} \\phi_t$ can be expressed uniquely as a polynomial in $E_4$, $E_6$ and Sakai’s forms, where $[x]$ is the integer part of $x$. This means that a Weyl invariant $E_8$ Jacobi form is completely determined by a solution of some linear equations. By solving the linear systems, we determine the generators of the free module of Weyl invariant $E_8$ weak (resp. holomorphic) Jacobi forms of given index $t$ when $t \\leq 13$ (resp. $t \\leq 11$).","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":"51 8","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2023.v17.n3.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In 1992 Wirthmüller showed that for any irreducible root system not of type $E_8$ the ring of weak Jacobi forms invariant under Weyl group is a polynomial algebra. However, it has recently been proved that for $E_8$ the ring is not a polynomial algebra. Weyl invariant $E_8$ Jacobi forms have many applications in string theory and it is an open problem to describe such forms. The scaled refined free energies of $E$-strings with certain $\eta$-function factors are conjectured to be Weyl invariant $E_8$ quasi-holomorphic Jacobi forms. It is further observed that the scaled refined free energies up to some powers of $E_4$ can be written as polynomials in nine Sakai’s $E_8$ Jacobi forms and Eisenstein series $E_2, E_4, E_6$. Motivated by the physical conjectures, we prove that for any Weyl invariant $E_8$ Jacobi form $\phi_t$ of index $t$ the function $E^{[t/5]}_4 \Delta^{[5t/6]} \phi_t$ can be expressed uniquely as a polynomial in $E_4$, $E_6$ and Sakai’s forms, where $[x]$ is the integer part of $x$. This means that a Weyl invariant $E_8$ Jacobi form is completely determined by a solution of some linear equations. By solving the linear systems, we determine the generators of the free module of Weyl invariant $E_8$ weak (resp. holomorphic) Jacobi forms of given index $t$ when $t \leq 13$ (resp. $t \leq 11$).
Weyl不变量$E_8$Jacobi形式和$E$字符串
1992年Wirthmüller证明了对于任何不属于$E_8$型的不可约根系统,在Weyl群下弱Jacobi形式不变的环是多项式代数。然而,最近已经证明,对于$E_8$,环不是多项式代数。Weyl不变量$E_8$Jacobi形式在弦理论中有许多应用,描述这种形式是一个悬而未决的问题。假定具有特定$\eta$-函数因子的$E$-串的标度精化自由能为Weyl不变量$E_8$拟全纯Jacobi形式。进一步观察到,高达$E_4$的一些幂的缩放精细自由能可以写成九个Sakai的$E_8$Jacobi形式和Eisenstein级数$E_2,E_4,E_6$的多项式。在物理猜想的启发下,我们证明了对于索引$t$的任何Weyl不变量$E_8$Jacobi形式$\phi_t$,函数$E^{[t/5]}_4\Delta^{[5t/6]}\phi_t$可以唯一地表示为$E_4$、$E_6$和Sakai形式中的多项式,其中$[x]$是$x$的整数部分。这意味着Weyl不变量$E_8$Jacobi形式完全由一些线性方程的解确定。通过求解线性系统,我们确定了给定索引$t$的Weyl不变量$E_8$弱(分别为全纯)Jacobi形式的自由模在$t\leq 13$(分别为$t\liq 11$)时的生成元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信