Whittaker Fourier type solutions to differential equations arising from string theory

IF 1.2 3区 数学 Q1 MATHEMATICS
Ksenia Fedosova, Kim Klinger-Logan
{"title":"Whittaker Fourier type solutions to differential equations arising from string theory","authors":"Ksenia Fedosova, Kim Klinger-Logan","doi":"10.4310/cntp.2023.v17.n3.a2","DOIUrl":null,"url":null,"abstract":"In this article, we find the full Fourier expansion for solutions of $(\\Delta-\\lambda)f(z) = -E_k (z) E_\\ell (z)$ for $z = x + i y \\in \\mathfrak{H}$ for certain values of parameters $k$, $\\ell$ and $\\lambda$. When such an $f$ is fully automorphic these functions are referred to as generalized non-holomorphic Eisenstein series. We give a connection of the boundary condition on such Fourier series with convolution formulas on the divisor functions. Additionally, we discuss a possible relation with the differential Galois theory.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":"51 9","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2023.v17.n3.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

In this article, we find the full Fourier expansion for solutions of $(\Delta-\lambda)f(z) = -E_k (z) E_\ell (z)$ for $z = x + i y \in \mathfrak{H}$ for certain values of parameters $k$, $\ell$ and $\lambda$. When such an $f$ is fully automorphic these functions are referred to as generalized non-holomorphic Eisenstein series. We give a connection of the boundary condition on such Fourier series with convolution formulas on the divisor functions. Additionally, we discuss a possible relation with the differential Galois theory.
弦理论微分方程的Whittaker-Fourier型解
在本文中,我们发现了对于参数$k$、$\ell$和$\lambda$的某些值,对于$z=x+iy\In\mathfrak{H}$,$(\Delta-\lambda)f(z)=-E_k(z)E_\ell(z)$的解的全傅立叶展开。当这样的$f$是完全自同构时,这些函数被称为广义非全纯艾森斯坦级数。我们给出了这种傅立叶级数的边界条件与除数函数上的卷积公式的联系。此外,我们还讨论了与微分伽罗瓦理论的可能关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信