E. A. de Nijs, B. Jansen, S. Absalah, R. Bol, A. Tietema
{"title":"Insight in molecular degradation patterns and co-metabolism during rose waste co-composting","authors":"E. A. de Nijs, B. Jansen, S. Absalah, R. Bol, A. Tietema","doi":"10.1007/s10533-023-01092-1","DOIUrl":null,"url":null,"abstract":"<div><p>Composting is recognized as a sustainable waste management strategy. However, little is known about green waste, and specifically rose waste, degradation patterns during composting. This study aimed (1) to gain insight in the underlying decomposition patterns during rose waste composting and (2) to identify co-metabolisms of ligneous material. Five different compost mixtures were tested ranging from pure rose waste to mixtures with tomato waste, kalanchoe waste or mature compost added. Samples were taken during a six-month experiment and analyzed by pyrolysis-GC/MS. The temporal trends in the relative abundance of 10 different compound groups were measured. Lignin and aliphatic compounds together accounted for ≥ 50% of the quantified pyrolysis products, but with changing contributions during composting. The relative abundance of polysaccharides and terpenes strongly decreased with more than 60% in the first 2 months. The simultaneous decrease in relative abundance of lignin and polysaccharides during initial composting phase indicated co-metabolism of lignin. The results from this study showed that while the presence of lignin is commonly regarded as a challenge in composting, it actually undergoes degradation through distinct mechanisms at the various composting stages.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"166 2","pages":"55 - 66"},"PeriodicalIF":3.9000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-023-01092-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-023-01092-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Composting is recognized as a sustainable waste management strategy. However, little is known about green waste, and specifically rose waste, degradation patterns during composting. This study aimed (1) to gain insight in the underlying decomposition patterns during rose waste composting and (2) to identify co-metabolisms of ligneous material. Five different compost mixtures were tested ranging from pure rose waste to mixtures with tomato waste, kalanchoe waste or mature compost added. Samples were taken during a six-month experiment and analyzed by pyrolysis-GC/MS. The temporal trends in the relative abundance of 10 different compound groups were measured. Lignin and aliphatic compounds together accounted for ≥ 50% of the quantified pyrolysis products, but with changing contributions during composting. The relative abundance of polysaccharides and terpenes strongly decreased with more than 60% in the first 2 months. The simultaneous decrease in relative abundance of lignin and polysaccharides during initial composting phase indicated co-metabolism of lignin. The results from this study showed that while the presence of lignin is commonly regarded as a challenge in composting, it actually undergoes degradation through distinct mechanisms at the various composting stages.
期刊介绍:
Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.