{"title":"Weyl neutrinos in plane symmetric spacetimes","authors":"Tekin Dereli, Yorgo Şenikoğlu","doi":"10.1007/s10714-023-03175-8","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate complex quaternion-valued exterior differential forms over 4-dimensional Lorentzian spacetimes and explore Weyl spinor fields as minimal left ideals within the complex quaternion algebra. The variational derivation of the coupled Einstein–Weyl equations from an action is presented, and the resulting field equations for both first and second order variations are derived and simplified. Exact plane symmetric solutions of the Einstein–Weyl equations are discussed, and two families of exact solutions describing left-moving and right-moving neutrino plane waves are provided. The study highlights the significance of adjusting a quartic self-coupling of the Weyl spinor in the action to ensure the equivalence of the field equations.\n</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"55 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-023-03175-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate complex quaternion-valued exterior differential forms over 4-dimensional Lorentzian spacetimes and explore Weyl spinor fields as minimal left ideals within the complex quaternion algebra. The variational derivation of the coupled Einstein–Weyl equations from an action is presented, and the resulting field equations for both first and second order variations are derived and simplified. Exact plane symmetric solutions of the Einstein–Weyl equations are discussed, and two families of exact solutions describing left-moving and right-moving neutrino plane waves are provided. The study highlights the significance of adjusting a quartic self-coupling of the Weyl spinor in the action to ensure the equivalence of the field equations.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.