GOE statistics on the moduli space of surfaces of large genus

IF 2.4 1区 数学 Q1 MATHEMATICS
Zeév Rudnick
{"title":"GOE statistics on the moduli space of surfaces of large genus","authors":"Zeév Rudnick","doi":"10.1007/s00039-023-00655-6","DOIUrl":null,"url":null,"abstract":"<p>For a compact hyperbolic surface, we define a smooth linear statistic, mimicking the number of Laplace eigenvalues in a short energy window. We study the variance of this statistic, when averaged over the moduli space <span>\\(\\mathcal{M}_{g}\\)</span> of all genus <i>g</i> surfaces with respect to the Weil-Petersson measure. We show that in the double limit, first taking the large genus limit and then the short window limit, we recover GOE statistics for the variance. The proof makes essential use of Mirzakhani’s integration formula.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"25 11","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-023-00655-6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

Abstract

For a compact hyperbolic surface, we define a smooth linear statistic, mimicking the number of Laplace eigenvalues in a short energy window. We study the variance of this statistic, when averaged over the moduli space \(\mathcal{M}_{g}\) of all genus g surfaces with respect to the Weil-Petersson measure. We show that in the double limit, first taking the large genus limit and then the short window limit, we recover GOE statistics for the variance. The proof makes essential use of Mirzakhani’s integration formula.

大亏格曲面模空间的GOE统计
对于紧致双曲面,我们定义了一个光滑的线性统计量,模拟短能量窗口中拉普拉斯特征值的数量。我们研究了这个统计量的方差,当在模空间\(\mathcal{M}_{g} \)。我们证明了在双极限中,首先取大亏格极限,然后取短窗极限,我们恢复了方差的GOE统计量。该证明充分利用了米尔扎哈尼的积分公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信