Bers’ simultaneous uniformization and the intersection of Poincaré holonomy varieties

IF 2.4 1区 数学 Q1 MATHEMATICS
Shinpei Baba
{"title":"Bers’ simultaneous uniformization and the intersection of Poincaré holonomy varieties","authors":"Shinpei Baba","doi":"10.1007/s00039-023-00653-8","DOIUrl":null,"url":null,"abstract":"<p>We consider the space of ordered pairs of distinct <span>\\({\\mathbb{C}{\\mathrm{P}}}^{1}\\)</span>-structures on Riemann surfaces (of any orientations) which have identical holonomy, so that the quasi-Fuchsian space is identified with a connected component of this space. This space holomorphically maps to the product of the Teichmüller spaces minus its diagonal.</p><p>In this paper, we prove that this mapping is a complete local branched covering map. As a corollary, we reprove Bers’ simultaneous uniformization theorem without any quasi-conformal deformation theory. Our main theorem is that the intersection of arbitrary two Poincaré holonomy varieties (<span>\\(\\operatorname{SL}_{2}\\mathbb{C}\\)</span>-opers) is a non-empty discrete set, which is closely related to the mapping.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"25 12","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-023-00653-8","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the space of ordered pairs of distinct \({\mathbb{C}{\mathrm{P}}}^{1}\)-structures on Riemann surfaces (of any orientations) which have identical holonomy, so that the quasi-Fuchsian space is identified with a connected component of this space. This space holomorphically maps to the product of the Teichmüller spaces minus its diagonal.

In this paper, we prove that this mapping is a complete local branched covering map. As a corollary, we reprove Bers’ simultaneous uniformization theorem without any quasi-conformal deformation theory. Our main theorem is that the intersection of arbitrary two Poincaré holonomy varieties (\(\operatorname{SL}_{2}\mathbb{C}\)-opers) is a non-empty discrete set, which is closely related to the mapping.

Bers的同时一致化与Poincaréholonomy变种的交集
我们考虑具有相同全息性的(任何方向的)黎曼曲面上的不同结构的有序对的空间,使得准Fuchsian空间被识别为该空间的连通分量。这个空间全纯映射到Teichmüller空间减去其对角线的乘积。本文证明了该映射是一个完全的局部分支覆盖映射。作为推论,我们在没有任何拟共形变形理论的情况下,重新提出了Bers的同时一致化定理。我们的主要定理是任意两个Poincaréholonomy变种(\(\ operatorname{SL}_{2} \mathbb{C}\)-运算器)是一个非空离散集,它与映射密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信