{"title":"Concentration of invariant means and dynamics of chain stabilizers in continuous geometries","authors":"Friedrich Martin Schneider","doi":"10.1007/s00039-023-00651-w","DOIUrl":null,"url":null,"abstract":"<p>We prove a concentration inequality for invariant means on topological groups, namely for such adapted to a chain of amenable topological subgroups. The result is based on an application of Azuma’s martingale inequality and provides a method for establishing extreme amenability. Building on this technique, we exhibit new examples of extremely amenable groups arising from von Neumann’s continuous geometries. Along the way, we also answer a question by Pestov on dynamical concentration in direct products of amenable topological groups.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-023-00651-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
We prove a concentration inequality for invariant means on topological groups, namely for such adapted to a chain of amenable topological subgroups. The result is based on an application of Azuma’s martingale inequality and provides a method for establishing extreme amenability. Building on this technique, we exhibit new examples of extremely amenable groups arising from von Neumann’s continuous geometries. Along the way, we also answer a question by Pestov on dynamical concentration in direct products of amenable topological groups.