Concentration of invariant means and dynamics of chain stabilizers in continuous geometries

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Friedrich Martin Schneider
{"title":"Concentration of invariant means and dynamics of chain stabilizers in continuous geometries","authors":"Friedrich Martin Schneider","doi":"10.1007/s00039-023-00651-w","DOIUrl":null,"url":null,"abstract":"<p>We prove a concentration inequality for invariant means on topological groups, namely for such adapted to a chain of amenable topological subgroups. The result is based on an application of Azuma’s martingale inequality and provides a method for establishing extreme amenability. Building on this technique, we exhibit new examples of extremely amenable groups arising from von Neumann’s continuous geometries. Along the way, we also answer a question by Pestov on dynamical concentration in direct products of amenable topological groups.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-023-00651-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

We prove a concentration inequality for invariant means on topological groups, namely for such adapted to a chain of amenable topological subgroups. The result is based on an application of Azuma’s martingale inequality and provides a method for establishing extreme amenability. Building on this technique, we exhibit new examples of extremely amenable groups arising from von Neumann’s continuous geometries. Along the way, we also answer a question by Pestov on dynamical concentration in direct products of amenable topological groups.

连续几何中不变均值的集中与链稳定器的动力学
我们证明了拓扑群上不变均值的一个集中不等式,也就是说,它适用于一个可服从的拓扑子群链。该结果基于Azuma的鞅不等式的一个应用,并提供了一种建立极端可适性的方法。在这项技术的基础上,我们展示了冯·诺依曼连续几何中产生的极易服从群的新例子。在此过程中,我们还回答了Pestov关于服从拓扑群的直积中的动力学集中的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信