A Generalization of the Chevalley–Warning and Ax–Katz Theorems with a View Towards Combinatorial Number Theory

IF 1 2区 数学 Q1 MATHEMATICS
David J. Grynkiewicz
{"title":"A Generalization of the Chevalley–Warning and Ax–Katz Theorems with a View Towards Combinatorial Number Theory","authors":"David J. Grynkiewicz","doi":"10.1007/s00493-023-00057-0","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\({\\mathbb {F}}_q\\)</span> be a finite field of characteristic <i>p</i> and order <i>q</i>. The Chevalley–Warning Theorem asserts that the set <i>V</i> of common zeros of a collection of polynomials must satisfy <span>\\(|V|\\equiv 0\\mod p\\)</span>, provided the number of variables is sufficiently large with respect to the degrees of the polynomials. The Ax–Katz Theorem generalizes this by giving tight bounds for higher order <i>p</i>-divisibility for |<i>V</i>|. Besides the intrinsic algebraic interest of these results, they are also important tools in the Polynomial Method, particularly in the prime field case <span>\\({\\mathbb {F}}_p\\)</span>, where they have been used to prove many results in Combinatorial Number Theory. In this paper, we begin by explaining how arguments used by Wilson to give an elementary proof of the <span>\\({\\mathbb {F}}_p\\)</span> case for the Ax–Katz Theorem can also be used to prove the following generalization of the Ax–Katz Theorem for <span>\\({\\mathbb {F}}_p\\)</span>, and thus also the Chevalley–Warning Theorem, where we allow varying prime power moduli. Given any box <span>\\({\\mathcal {B}}={\\mathcal {I}}_1\\times \\ldots \\times {\\mathcal {I}}_n\\)</span>, with each <span>\\({\\mathcal {I}}_j\\subseteq {\\mathbb {Z}}\\)</span> a complete system of residues modulo <i>p</i>, and a collection of nonzero polynomials <span>\\(f_1,\\ldots ,f_s\\in {\\mathbb {Z}}[X_1,\\ldots ,X_n]\\)</span>, then the set of common zeros inside the box, </p><span>$$\\begin{aligned} V=\\{{\\textbf{a}}\\in {\\mathcal {B}}:\\; f_1({{\\textbf {a}}})\\equiv 0\\mod p^{m_1},\\ldots ,f_s({{\\textbf {a}}})\\equiv 0\\mod p^{m_s}\\}, \\end{aligned}$$</span><p>satisfies <span>\\(|V|\\equiv 0\\mod p^m\\)</span>, provided <span>\\(n&gt;(m-1)\\max _{i\\in [1,s]}\\Big \\{p^{m_i-1}\\deg f_i\\Big \\}+ \\sum \\nolimits _{i=1}^{s}\\frac{p^{m_i}-1}{p-1}\\deg f_i.\\)</span> The introduction of the box <span>\\({\\mathcal {B}}\\)</span> adds a degree of flexibility, in comparison to prior work of Sun. Indeed, incorporating the ideas of Sun, a weighted version of the above result is given. We continue by explaining how the added flexibility, combined with an appropriate use of Hensel’s Lemma to choose the complete system of residues <span>\\({\\mathcal {I}}_j\\)</span>, allows many combinatorial applications of the Chevalley–Warning and Ax–Katz Theorems, previously only valid for <span>\\({\\mathbb {F}}_p^n\\)</span>, to extend with bare minimal modification to validity for an arbitrary finite abelian <i>p</i>-group <i>G</i>. We illustrate this by giving several examples, including a new proof of the exact value of the Davenport Constant <span>\\({\\textsf{D}}(G)\\)</span> for finite abelian <i>p</i>-groups, and a streamlined proof of the Kemnitz Conjecture. We also derive some new results, for a finite abelian <i>p</i>-group <i>G</i> with exponent <i>q</i>, regarding the constant <span>\\({\\textsf{s}}_{kq}(G)\\)</span>, defined as the minimal integer <span>\\(\\ell \\)</span> such that any sequence of <span>\\(\\ell \\)</span> terms from <i>G</i> must contain a zero-sum subsequence of length <i>kq</i>. Among other results for this constant, we show that <span>\\({\\textsf{s}}_{kq}(G)\\le kq+{\\textsf{D}}(G)-1\\)</span> provided <span>\\(k&gt;\\frac{d(d-1)}{2}\\)</span> and <span>\\(p&gt; d(d-1)\\)</span>, where , answering a problem of Xiaoyu He in the affirmative by removing all dependence on <i>p</i> from the bound for <i>k</i>.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"12 12","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-023-00057-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

Let \({\mathbb {F}}_q\) be a finite field of characteristic p and order q. The Chevalley–Warning Theorem asserts that the set V of common zeros of a collection of polynomials must satisfy \(|V|\equiv 0\mod p\), provided the number of variables is sufficiently large with respect to the degrees of the polynomials. The Ax–Katz Theorem generalizes this by giving tight bounds for higher order p-divisibility for |V|. Besides the intrinsic algebraic interest of these results, they are also important tools in the Polynomial Method, particularly in the prime field case \({\mathbb {F}}_p\), where they have been used to prove many results in Combinatorial Number Theory. In this paper, we begin by explaining how arguments used by Wilson to give an elementary proof of the \({\mathbb {F}}_p\) case for the Ax–Katz Theorem can also be used to prove the following generalization of the Ax–Katz Theorem for \({\mathbb {F}}_p\), and thus also the Chevalley–Warning Theorem, where we allow varying prime power moduli. Given any box \({\mathcal {B}}={\mathcal {I}}_1\times \ldots \times {\mathcal {I}}_n\), with each \({\mathcal {I}}_j\subseteq {\mathbb {Z}}\) a complete system of residues modulo p, and a collection of nonzero polynomials \(f_1,\ldots ,f_s\in {\mathbb {Z}}[X_1,\ldots ,X_n]\), then the set of common zeros inside the box,

$$\begin{aligned} V=\{{\textbf{a}}\in {\mathcal {B}}:\; f_1({{\textbf {a}}})\equiv 0\mod p^{m_1},\ldots ,f_s({{\textbf {a}}})\equiv 0\mod p^{m_s}\}, \end{aligned}$$

satisfies \(|V|\equiv 0\mod p^m\), provided \(n>(m-1)\max _{i\in [1,s]}\Big \{p^{m_i-1}\deg f_i\Big \}+ \sum \nolimits _{i=1}^{s}\frac{p^{m_i}-1}{p-1}\deg f_i.\) The introduction of the box \({\mathcal {B}}\) adds a degree of flexibility, in comparison to prior work of Sun. Indeed, incorporating the ideas of Sun, a weighted version of the above result is given. We continue by explaining how the added flexibility, combined with an appropriate use of Hensel’s Lemma to choose the complete system of residues \({\mathcal {I}}_j\), allows many combinatorial applications of the Chevalley–Warning and Ax–Katz Theorems, previously only valid for \({\mathbb {F}}_p^n\), to extend with bare minimal modification to validity for an arbitrary finite abelian p-group G. We illustrate this by giving several examples, including a new proof of the exact value of the Davenport Constant \({\textsf{D}}(G)\) for finite abelian p-groups, and a streamlined proof of the Kemnitz Conjecture. We also derive some new results, for a finite abelian p-group G with exponent q, regarding the constant \({\textsf{s}}_{kq}(G)\), defined as the minimal integer \(\ell \) such that any sequence of \(\ell \) terms from G must contain a zero-sum subsequence of length kq. Among other results for this constant, we show that \({\textsf{s}}_{kq}(G)\le kq+{\textsf{D}}(G)-1\) provided \(k>\frac{d(d-1)}{2}\) and \(p> d(d-1)\), where , answering a problem of Xiaoyu He in the affirmative by removing all dependence on p from the bound for k.

Abstract Image

从组合数论看Chevalley–Warning和Ax–Katz定理的推广
设\({\mathbb{F}}_q\)是特征p和阶q的有限域。Chevalley–Warning定理断言,多项式集合的公共零点集V必须满足\(|V|\equiv 0\mod p\),条件是变量的数量相对于多项式的阶数足够大。Ax–Katz定理通过给出|V|的高阶p可分性的紧界来推广这一点。除了这些结果的内在代数兴趣之外,它们也是多项式方法中的重要工具,特别是在素域情况下({\mathbb{F}}_p),它们已被用于证明组合数论中的许多结果。在本文中,我们首先解释Wilson用来给出Ax–Katz定理的\({\mathbb{F}}_p)情况的初等证明的自变量,如何也可以用来证明\({{\math bb{F}})的Ax–Katz定理的以下推广,以及Chevalley–Warning定理,其中我们允许变素数幂模。给定任意一个框\({\mathcal{B}}={\math cal{I}}_1\times\ldots\times{\matical{I}}_n\}\在{\mathcal{B}}中:\;f_1({{\textbf{a}})\equiv 0\mod p^{m_1},\ldots,f_s({\txtbf{a}})\equif 0\mod p ^{ms},\end{aligned}$$满足\(|V|\equiv 0\mod p^m\),提供\ p^{m_i}-1}{p-1}\deg f_i.\)与Sun之前的工作相比,盒子({\mathcal{B}})的引入增加了一定程度的灵活性。事实上,结合孙的思想,给出了上述结果的加权版本。我们继续解释了增加的灵活性,再加上Hensel引理的适当使用来选择残基的完整系统\({\mathcal{I}}_j\),如何允许Chevalley–Warning和Ax–Katz定理的许多组合应用,这些定理以前只对\({\mathbb{F}}}_p^n\)有效,通过给出几个例子来说明这一点,包括有限阿贝尔p-群的Davenport常数({\textsf{D}}(G)})精确值的一个新证明,以及Kemnitz猜想的一个简化证明。我们还得到了一些新的结果,对于指数为q的有限阿贝尔p-群G,关于常数\({\textsf{s}}_{kq}(G)\),定义为最小整数\(\ell\),使得来自G的任何\(\ell \)项序列都必须包含长度为kq的零和子序列。在这个常数的其他结果中,我们证明了\({\textsf{s}}_{kq}(G)\le kq+{\txtsf{D}}}(G)-1\)提供了\(k>;\frac{D(D-1)}{2}\)和\(p>;D(D-2)\),其中,通过从k的界中消除对p的所有依赖性,肯定地回答了何的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信