On Unique Sums in Abelian Groups

IF 1 2区 数学 Q1 MATHEMATICS
Benjamin Bedert
{"title":"On Unique Sums in Abelian Groups","authors":"Benjamin Bedert","doi":"10.1007/s00493-023-00069-w","DOIUrl":null,"url":null,"abstract":"<p>Let <i>A</i> be a subset of the cyclic group <span>\\({\\textbf{Z}}/p{\\textbf{Z}}\\)</span> with <i>p</i> prime. It is a well-studied problem to determine how small |<i>A</i>| can be if there is no unique sum in <span>\\(A+A\\)</span>, meaning that for every two elements <span>\\(a_1,a_2\\in A\\)</span>, there exist <span>\\(a_1',a_2'\\in A\\)</span> such that <span>\\(a_1+a_2=a_1'+a_2'\\)</span> and <span>\\(\\{a_1,a_2\\}\\ne \\{a_1',a_2'\\}\\)</span>. Let <i>m</i>(<i>p</i>) be the size of a smallest subset of <span>\\({\\textbf{Z}}/p{\\textbf{Z}}\\)</span> with no unique sum. The previous best known bounds are <span>\\(\\log p \\ll m(p)\\ll \\sqrt{p}\\)</span>. In this paper we improve both the upper and lower bounds to <span>\\(\\omega (p)\\log p \\leqslant m(p)\\ll (\\log p)^2\\)</span> for some function <span>\\(\\omega (p)\\)</span> which tends to infinity as <span>\\(p\\rightarrow \\infty \\)</span>. In particular, this shows that for any <span>\\(B\\subset {\\textbf{Z}}/p{\\textbf{Z}}\\)</span> of size <span>\\(|B|&lt;\\omega (p)\\log p\\)</span>, its sumset <span>\\(B+B\\)</span> contains a unique sum. We also obtain corresponding bounds on the size of the smallest subset of a general Abelian group having no unique sum.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"11 16","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-023-00069-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let A be a subset of the cyclic group \({\textbf{Z}}/p{\textbf{Z}}\) with p prime. It is a well-studied problem to determine how small |A| can be if there is no unique sum in \(A+A\), meaning that for every two elements \(a_1,a_2\in A\), there exist \(a_1',a_2'\in A\) such that \(a_1+a_2=a_1'+a_2'\) and \(\{a_1,a_2\}\ne \{a_1',a_2'\}\). Let m(p) be the size of a smallest subset of \({\textbf{Z}}/p{\textbf{Z}}\) with no unique sum. The previous best known bounds are \(\log p \ll m(p)\ll \sqrt{p}\). In this paper we improve both the upper and lower bounds to \(\omega (p)\log p \leqslant m(p)\ll (\log p)^2\) for some function \(\omega (p)\) which tends to infinity as \(p\rightarrow \infty \). In particular, this shows that for any \(B\subset {\textbf{Z}}/p{\textbf{Z}}\) of size \(|B|<\omega (p)\log p\), its sumset \(B+B\) contains a unique sum. We also obtain corresponding bounds on the size of the smallest subset of a general Abelian group having no unique sum.

关于阿贝尔群中的唯一和
设A是具有p素数的循环群\({\textbf{Z}}/p{\text bf{Z})的子集。如果在\(a+a\)中没有唯一和,则确定|a|有多小是一个研究得很好的问题,这意味着对于每两个元素\(a_1,a_2\在a\中),都存在\(a_1',a_2'\在a\中),使得\(a_a1+a_2=a_1'+Au2'\)和\(a_2,a_1 \}ne \{a_1',a_2'\}\)。设m(p)是不具有唯一和的\({\textbf{Z}}}/p{\text bf{Z})的最小子集的大小。以前最著名的边界是\(\log p\ll m(p)\ll\sqrt{p}\)。在本文中,我们将某个函数\(\omega(p)\)的上界和下界都改进为\(\ω(p)\log p\leqslant m(p)\ll(\log p)^2),该函数趋向于无穷大为\(p\rightarrow\infty\)。特别地,这表明,对于大小为\(|B|<;\omega(p)\log p\)的任何\(B\subet{\textbf{Z}}}/p{\text bf{Z}}\),其sumset\(B+B\)包含唯一和。我们还得到了没有唯一和的一般阿贝尔群的最小子集大小的相应界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信