The maximum of log-correlated Gaussian fields in random environment

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Florian Schweiger, Ofer Zeitouni
{"title":"The maximum of log-correlated Gaussian fields in random environment","authors":"Florian Schweiger,&nbsp;Ofer Zeitouni","doi":"10.1002/cpa.22181","DOIUrl":null,"url":null,"abstract":"<p>We study the distribution of the maximum of a large class of Gaussian fields indexed by a box <math>\n <semantics>\n <mrow>\n <msub>\n <mi>V</mi>\n <mi>N</mi>\n </msub>\n <mo>⊂</mo>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n </mrow>\n <annotation>$V_N\\subset \\mathbb {Z}^d$</annotation>\n </semantics></math> and possessing logarithmic correlations up to local defects that are sufficiently rare. Under appropriate assumptions that generalize those in Ding et al., we show that asymptotically, the centered maximum of the field has a randomly-shifted Gumbel distribution. We prove that the two dimensional Gaussian free field on a super-critical bond percolation cluster with <math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> close enough to 1, as well as the Gaussian free field in i.i.d. bounded conductances, fall under the assumptions of our general theorem.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22181","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22181","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We study the distribution of the maximum of a large class of Gaussian fields indexed by a box V N Z d $V_N\subset \mathbb {Z}^d$ and possessing logarithmic correlations up to local defects that are sufficiently rare. Under appropriate assumptions that generalize those in Ding et al., we show that asymptotically, the centered maximum of the field has a randomly-shifted Gumbel distribution. We prove that the two dimensional Gaussian free field on a super-critical bond percolation cluster with p $p$ close enough to 1, as well as the Gaussian free field in i.i.d. bounded conductances, fall under the assumptions of our general theorem.

Abstract Image

随机环境中对数相关高斯场的最大值
我们研究了一大类高斯场的最大值的分布,该类高斯场由一个盒VN⊂Zd$V_N\subet\mathbb{Z}^d$索引,并且具有对数相关性,直到足够罕见的局部缺陷。在适当的假设下,推广了Ding等人的假设。,我们证明了场的中心极大值渐近地具有随机移位的Gumbel分布。我们证明了p足够接近1的超临界键渗流簇上的二维高斯自由场,以及i.i.d.有界电导中的高斯自由场都属于我们的一般定理的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信