Matrix deviation inequality for ℓp-norm

Pub Date : 2023-06-15 DOI:10.1142/s2010326323500077
Yuan-Chung Sheu, Te-Chun Wang
{"title":"Matrix deviation inequality for ℓp-norm","authors":"Yuan-Chung Sheu, Te-Chun Wang","doi":"10.1142/s2010326323500077","DOIUrl":null,"url":null,"abstract":"<p>Motivated by the general matrix deviation inequality for i.i.d. ensemble Gaussian matrix [R. Vershynin, <i>High-Dimensional Probability: An Introduction with Applications in Data Science</i>, Cambridge Series in Statistical and Probabilistic Mathematics (Cambridge University Press, 2018), doi:10.1017/9781108231596 of Theorem 11.1.5], we show that this property holds for the <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span><span></span>-norm with <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mo>≤</mo><mi>p</mi><mo>&lt;</mo><mi>∞</mi></math></span><span></span> and i.i.d. ensemble sub-Gaussian matrices, i.e. random matrices with i.i.d. mean-zero, unit variance, sub-Gaussian entries. As a consequence of our result, we establish the Johnson–Lindenstrauss lemma from <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span><span></span>-space to <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msubsup></math></span><span></span>-space for all i.i.d. ensemble sub-Gaussian matrices.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326323500077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by the general matrix deviation inequality for i.i.d. ensemble Gaussian matrix [R. Vershynin, High-Dimensional Probability: An Introduction with Applications in Data Science, Cambridge Series in Statistical and Probabilistic Mathematics (Cambridge University Press, 2018), doi:10.1017/9781108231596 of Theorem 11.1.5], we show that this property holds for the p-norm with 1p< and i.i.d. ensemble sub-Gaussian matrices, i.e. random matrices with i.i.d. mean-zero, unit variance, sub-Gaussian entries. As a consequence of our result, we establish the Johnson–Lindenstrauss lemma from 2n-space to pm-space for all i.i.d. ensemble sub-Gaussian matrices.

分享
查看原文
的矩阵偏差不等式ℓp-范数
受i.i.d.系综高斯矩阵的一般矩阵偏差不等式[R.Vershynin,《高维概率:数据科学应用导论》,剑桥统计与概率数学系列(剑桥大学出版社,2018),doi:10.1017/9781108231596 of Theorem 11.1.5]的启发,我们证明了这一性质适用于ℓ1≤p<;∞的p-范数和i.i.d.系综亚高斯矩阵,即具有i.i.d.均值为零、单位方差、亚高斯项的随机矩阵。由于我们的结果,我们从中建立了Johnson–Lindenstrauss引理ℓ2n空间到ℓpm空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信