{"title":"Matrix deviation inequality for ℓp-norm","authors":"Yuan-Chung Sheu, Te-Chun Wang","doi":"10.1142/s2010326323500077","DOIUrl":null,"url":null,"abstract":"<p>Motivated by the general matrix deviation inequality for i.i.d. ensemble Gaussian matrix [R. Vershynin, <i>High-Dimensional Probability: An Introduction with Applications in Data Science</i>, Cambridge Series in Statistical and Probabilistic Mathematics (Cambridge University Press, 2018), doi:10.1017/9781108231596 of Theorem 11.1.5], we show that this property holds for the <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span><span></span>-norm with <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mi>∞</mi></math></span><span></span> and i.i.d. ensemble sub-Gaussian matrices, i.e. random matrices with i.i.d. mean-zero, unit variance, sub-Gaussian entries. As a consequence of our result, we establish the Johnson–Lindenstrauss lemma from <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span><span></span>-space to <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msubsup></math></span><span></span>-space for all i.i.d. ensemble sub-Gaussian matrices.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326323500077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by the general matrix deviation inequality for i.i.d. ensemble Gaussian matrix [R. Vershynin, High-Dimensional Probability: An Introduction with Applications in Data Science, Cambridge Series in Statistical and Probabilistic Mathematics (Cambridge University Press, 2018), doi:10.1017/9781108231596 of Theorem 11.1.5], we show that this property holds for the -norm with and i.i.d. ensemble sub-Gaussian matrices, i.e. random matrices with i.i.d. mean-zero, unit variance, sub-Gaussian entries. As a consequence of our result, we establish the Johnson–Lindenstrauss lemma from -space to -space for all i.i.d. ensemble sub-Gaussian matrices.
受i.i.d.系综高斯矩阵的一般矩阵偏差不等式[R.Vershynin,《高维概率:数据科学应用导论》,剑桥统计与概率数学系列(剑桥大学出版社,2018),doi:10.1017/9781108231596 of Theorem 11.1.5]的启发,我们证明了这一性质适用于ℓ1≤p<;∞的p-范数和i.i.d.系综亚高斯矩阵,即具有i.i.d.均值为零、单位方差、亚高斯项的随机矩阵。由于我们的结果,我们从中建立了Johnson–Lindenstrauss引理ℓ2n空间到ℓpm空间。