Effective Results on the Size and Structure of Sumsets

IF 1 2区 数学 Q1 MATHEMATICS
Andrew Granville, George Shakan, Aled Walker
{"title":"Effective Results on the Size and Structure of Sumsets","authors":"Andrew Granville, George Shakan, Aled Walker","doi":"10.1007/s00493-023-00055-2","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(A \\subset {\\mathbb {Z}}^d\\)</span> be a finite set. It is known that <i>NA</i> has a particular size (<span>\\(\\vert NA\\vert = P_A(N)\\)</span> for some <span>\\(P_A(X) \\in {\\mathbb {Q}}[X]\\)</span>) and structure (all of the lattice points in a cone other than certain exceptional sets), once <i>N</i> is larger than some threshold. In this article we give the first effective upper bounds for this threshold for arbitrary <i>A</i>. Such explicit results were only previously known in the special cases when <span>\\(d=1\\)</span>, when the convex hull of <i>A</i> is a simplex or when <span>\\(\\vert A\\vert = d+2\\)</span> Curran and Goldmakher (Discrete Anal. Paper No. 27, 2021), results which we improve.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"13 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-023-00055-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Let \(A \subset {\mathbb {Z}}^d\) be a finite set. It is known that NA has a particular size (\(\vert NA\vert = P_A(N)\) for some \(P_A(X) \in {\mathbb {Q}}[X]\)) and structure (all of the lattice points in a cone other than certain exceptional sets), once N is larger than some threshold. In this article we give the first effective upper bounds for this threshold for arbitrary A. Such explicit results were only previously known in the special cases when \(d=1\), when the convex hull of A is a simplex or when \(\vert A\vert = d+2\) Curran and Goldmakher (Discrete Anal. Paper No. 27, 2021), results which we improve.

Sumset大小和结构的有效结果
设\(A\subet{\mathbb{Z}}^d\)是一个有限集。已知,一旦N大于某个阈值,对于某些(P_a(X)\ in{\mathbb{Q}}[X]\)和结构(锥中除某些例外集之外的所有格点),NA具有特定的大小(\(\vert NA\vert=P_a(N)\)。在本文中,我们给出了任意A的该阈值的第一个有效上界。这种显式结果以前只有在特殊情况下才知道,当\(d=1\),当A的凸包是单纯形,或者当\(\vert A\vert=d+2\)Curran和Goldmaher(Discrete Anal.Paper No.272021),我们改进了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信