Zhiwei Lin, Tingting Liang, Taihong Xiao, Yongtao Wang, Ming-Hsuan Yang
{"title":"FlowNAS: Neural Architecture Search for Optical Flow Estimation","authors":"Zhiwei Lin, Tingting Liang, Taihong Xiao, Yongtao Wang, Ming-Hsuan Yang","doi":"10.1007/s11263-023-01920-9","DOIUrl":null,"url":null,"abstract":"<p>Recent optical flow estimators usually employ deep models designed for image classification as the encoders for feature extraction and matching. However, those encoders developed for image classification may be sub-optimal for flow estimation. In contrast, the decoder design of optical flow estimators often requires meticulous design for flow estimation. The disconnect between the encoder and decoder could negatively affect optical flow estimation. To address this issue, we propose a neural architecture search method, FlowNAS, to automatically find the more suitable and stronger encoder architecture for existing flow decoders. We first design a suitable search space, including various convolutional operators, and construct a weight-sharing super-network for efficiently evaluating the candidate architectures. To better train the super-network, we present a Feature Alignment Distillation module that utilizes a well-trained flow estimator to guide the training of the super-network. Finally, a resource-constrained evolutionary algorithm is exploited to determine an optimal architecture (i.e., sub-network). Experimental results show that FlowNAS can be easily incorporated into existing flow estimators and achieves state-of-the-art performance with the trade-off between accuracy and efficiency. Furthermore, the encoder architecture discovered by FlowNAS with the weights inherited from the super-network achieves 4.67% F1-all error on KITTI, an 8.4% reduction of RAFT baseline, surpassing state-of-the-art handcrafted GMA and AGFlow models, while reducing the model complexity and latency. The source code and trained models will be released at https://github.com/VDIGPKU/FlowNAS.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"31 50","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-023-01920-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Recent optical flow estimators usually employ deep models designed for image classification as the encoders for feature extraction and matching. However, those encoders developed for image classification may be sub-optimal for flow estimation. In contrast, the decoder design of optical flow estimators often requires meticulous design for flow estimation. The disconnect between the encoder and decoder could negatively affect optical flow estimation. To address this issue, we propose a neural architecture search method, FlowNAS, to automatically find the more suitable and stronger encoder architecture for existing flow decoders. We first design a suitable search space, including various convolutional operators, and construct a weight-sharing super-network for efficiently evaluating the candidate architectures. To better train the super-network, we present a Feature Alignment Distillation module that utilizes a well-trained flow estimator to guide the training of the super-network. Finally, a resource-constrained evolutionary algorithm is exploited to determine an optimal architecture (i.e., sub-network). Experimental results show that FlowNAS can be easily incorporated into existing flow estimators and achieves state-of-the-art performance with the trade-off between accuracy and efficiency. Furthermore, the encoder architecture discovered by FlowNAS with the weights inherited from the super-network achieves 4.67% F1-all error on KITTI, an 8.4% reduction of RAFT baseline, surpassing state-of-the-art handcrafted GMA and AGFlow models, while reducing the model complexity and latency. The source code and trained models will be released at https://github.com/VDIGPKU/FlowNAS.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.