Dietary Restriction Delays But Cannot Heal Irradiation-Induced Hair Graying by Preserving Hair Follicle Stem Cells in Quiescence.

Rejuvenation research Pub Date : 2023-12-01 Epub Date: 2023-11-29 DOI:10.1089/rej.2023.0037
Rongrong Qiu, Xingxing Qiu, Mingyue Su, Man Sun, Yiting Wang, Jianying Wu, Hua Wang, Duozhuang Tang, Si Tao
{"title":"Dietary Restriction Delays But Cannot Heal Irradiation-Induced Hair Graying by Preserving Hair Follicle Stem Cells in Quiescence.","authors":"Rongrong Qiu, Xingxing Qiu, Mingyue Su, Man Sun, Yiting Wang, Jianying Wu, Hua Wang, Duozhuang Tang, Si Tao","doi":"10.1089/rej.2023.0037","DOIUrl":null,"url":null,"abstract":"<p><p>DNA damage represents one of the cell intrinsic causes of stem cell aging, which leads to differentiation-induced removal of damaged stem cells in skin and blood. Dietary restriction (DR) retards aging across various species, including several strains of laboratory mice. Whether, DR has the potential to ameliorate DNA damage-driven stem cell exhaustion remains incompletely understood. In this study, we show that DR strongly extends the time to hair graying in response to γ-irradiation (ionizing radiation [IR])-induced DNA damage of C57BL/6 J mice. The study shows that DR prolongs resting phase of hair follicles. DR-mediated prolongation of hair follicle stem cell (HFSC) quiescence blocks hair growth and prevents the depletion of HFSCs and ckit<sup>+</sup> melanoblasts in response to IR. However, prolongation of HFSC quiescence also correlates with a suppression of DNA repair and cannot prevent melanoblast loss and hair graying in the long run, when hair cycling is reinitiated even after extended periods of time. Altogether, these results support a model indicating that nutrient deprivation can delay but not heal DNA damage-driven extinction of melanoblasts by stalling HFSCs in a prolonged state of quiescence coupled with inhibition of DNA repair. Disconnecting these two types of responses to DR could have the potential to delay stem cell aging.</p>","PeriodicalId":94189,"journal":{"name":"Rejuvenation research","volume":" ","pages":"242-252"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rejuvenation research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/rej.2023.0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

DNA damage represents one of the cell intrinsic causes of stem cell aging, which leads to differentiation-induced removal of damaged stem cells in skin and blood. Dietary restriction (DR) retards aging across various species, including several strains of laboratory mice. Whether, DR has the potential to ameliorate DNA damage-driven stem cell exhaustion remains incompletely understood. In this study, we show that DR strongly extends the time to hair graying in response to γ-irradiation (ionizing radiation [IR])-induced DNA damage of C57BL/6 J mice. The study shows that DR prolongs resting phase of hair follicles. DR-mediated prolongation of hair follicle stem cell (HFSC) quiescence blocks hair growth and prevents the depletion of HFSCs and ckit+ melanoblasts in response to IR. However, prolongation of HFSC quiescence also correlates with a suppression of DNA repair and cannot prevent melanoblast loss and hair graying in the long run, when hair cycling is reinitiated even after extended periods of time. Altogether, these results support a model indicating that nutrient deprivation can delay but not heal DNA damage-driven extinction of melanoblasts by stalling HFSCs in a prolonged state of quiescence coupled with inhibition of DNA repair. Disconnecting these two types of responses to DR could have the potential to delay stem cell aging.

饮食限制通过保持毛囊干细胞静止来延缓但不能治愈辐射诱导的头发变白。
DNA损伤是干细胞衰老的细胞内在原因之一,导致皮肤和血液中受损干细胞的分化诱导去除。饮食限制(DR)可延缓不同物种的衰老,包括几种实验室小鼠。DR是否具有改善DNA损伤驱动的干细胞耗竭的潜力仍不完全清楚。在这里,我们发现DR强烈延长了C57BL/6J小鼠对γ射线(IR)诱导的DNA损伤的头发变白的时间。研究表明DR能延长毛囊的静息期。DR介导的毛囊干细胞(HFSC)静止期的延长阻断了头发生长,并防止了HFSC和ckit+黑色素母细胞在IR反应中的耗竭。然而,HFSC静止期的缩短也与DNA修复的抑制有关,从长远来看,当头发循环即使在长时间后重新开始时,也不能防止黑色素细胞丢失和头发变白。总之,这些结果支持了一个模型,该模型表明营养缺乏可以通过使HFSC停滞在长时间的静止状态并抑制DNA修复来延迟但不能治愈由DNA损伤驱动的黑色素母细胞灭绝。断开这两种对DR的反应可能有延迟干细胞衰老的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信